MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilmax Structured version   Visualization version   GIF version

Theorem ufilmax 23936
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilmax ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)

Proof of Theorem ufilmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹𝐺)
2 filelss 23881 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺) → 𝑥𝑋)
32ex 412 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺𝑥𝑋))
433ad2ant2 1134 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝑋))
5 ufilb 23935 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
653ad2antl1 1185 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
7 simpl3 1193 . . . . . . . . . 10 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → 𝐹𝐺)
87sseld 4007 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐺))
9 filfbas 23877 . . . . . . . . . . . . 13 (𝐺 ∈ (Fil‘𝑋) → 𝐺 ∈ (fBas‘𝑋))
10 fbncp 23868 . . . . . . . . . . . . . 14 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺) → ¬ (𝑋𝑥) ∈ 𝐺)
1110ex 412 . . . . . . . . . . . . 13 (𝐺 ∈ (fBas‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
129, 11syl 17 . . . . . . . . . . . 12 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
1312con2d 134 . . . . . . . . . . 11 (𝐺 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
14133ad2ant2 1134 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
1514adantr 480 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
168, 15syld 47 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → ¬ 𝑥𝐺))
176, 16sylbid 240 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ 𝑥𝐺))
1817con4d 115 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (𝑥𝐺𝑥𝐹))
1918ex 412 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝑋 → (𝑥𝐺𝑥𝐹)))
2019com23 86 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺 → (𝑥𝑋𝑥𝐹)))
214, 20mpdd 43 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝐹))
2221ssrdv 4014 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐺𝐹)
231, 22eqssd 4026 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  cfv 6573  fBascfbas 21375  Filcfil 23874  UFilcufil 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384  df-fil 23875  df-ufil 23930
This theorem is referenced by:  isufil2  23937  ufileu  23948  uffixfr  23952  fmufil  23988  uffclsflim  24060
  Copyright terms: Public domain W3C validator