Step | Hyp | Ref
| Expression |
1 | | simp3 1136 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → 𝐹 ⊆ 𝐺) |
2 | | filelss 22911 |
. . . . . 6
⊢ ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐺) → 𝑥 ⊆ 𝑋) |
3 | 2 | ex 412 |
. . . . 5
⊢ (𝐺 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋)) |
4 | 3 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ 𝐺 → 𝑥 ⊆ 𝑋)) |
5 | | ufilb 22965 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
6 | 5 | 3ad2antl1 1183 |
. . . . . . . 8
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
7 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → 𝐹 ⊆ 𝐺) |
8 | 7 | sseld 3916 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → (𝑋 ∖ 𝑥) ∈ 𝐺)) |
9 | | filfbas 22907 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (Fil‘𝑋) → 𝐺 ∈ (fBas‘𝑋)) |
10 | | fbncp 22898 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ 𝐺) → ¬ (𝑋 ∖ 𝑥) ∈ 𝐺) |
11 | 10 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (fBas‘𝑋) → (𝑥 ∈ 𝐺 → ¬ (𝑋 ∖ 𝑥) ∈ 𝐺)) |
12 | 9, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐺 → ¬ (𝑋 ∖ 𝑥) ∈ 𝐺)) |
13 | 12 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (Fil‘𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺)) |
14 | 13 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → ((𝑋 ∖ 𝑥) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺)) |
15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐺 → ¬ 𝑥 ∈ 𝐺)) |
16 | 8, 15 | syld 47 |
. . . . . . . 8
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺)) |
17 | 6, 16 | sylbid 239 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ 𝐺)) |
18 | 17 | con4d 115 |
. . . . . 6
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ⊆ 𝑋) → (𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹)) |
19 | 18 | ex 412 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ⊆ 𝑋 → (𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹))) |
20 | 19 | com23 86 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ 𝐺 → (𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐹))) |
21 | 4, 20 | mpdd 43 |
. . 3
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ 𝐺 → 𝑥 ∈ 𝐹)) |
22 | 21 | ssrdv 3923 |
. 2
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → 𝐺 ⊆ 𝐹) |
23 | 1, 22 | eqssd 3934 |
1
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → 𝐹 = 𝐺) |