MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilmax Structured version   Visualization version   GIF version

Theorem ufilmax 23794
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilmax ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)

Proof of Theorem ufilmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹𝐺)
2 filelss 23739 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺) → 𝑥𝑋)
32ex 412 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺𝑥𝑋))
433ad2ant2 1134 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝑋))
5 ufilb 23793 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
653ad2antl1 1186 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
7 simpl3 1194 . . . . . . . . . 10 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → 𝐹𝐺)
87sseld 3945 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐺))
9 filfbas 23735 . . . . . . . . . . . . 13 (𝐺 ∈ (Fil‘𝑋) → 𝐺 ∈ (fBas‘𝑋))
10 fbncp 23726 . . . . . . . . . . . . . 14 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺) → ¬ (𝑋𝑥) ∈ 𝐺)
1110ex 412 . . . . . . . . . . . . 13 (𝐺 ∈ (fBas‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
129, 11syl 17 . . . . . . . . . . . 12 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
1312con2d 134 . . . . . . . . . . 11 (𝐺 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
14133ad2ant2 1134 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
1514adantr 480 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
168, 15syld 47 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → ¬ 𝑥𝐺))
176, 16sylbid 240 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ 𝑥𝐺))
1817con4d 115 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (𝑥𝐺𝑥𝐹))
1918ex 412 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝑋 → (𝑥𝐺𝑥𝐹)))
2019com23 86 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺 → (𝑥𝑋𝑥𝐹)))
214, 20mpdd 43 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝐹))
2221ssrdv 3952 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐺𝐹)
231, 22eqssd 3964 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  wss 3914  cfv 6511  fBascfbas 21252  Filcfil 23732  UFilcufil 23786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-fbas 21261  df-fil 23733  df-ufil 23788
This theorem is referenced by:  isufil2  23795  ufileu  23806  uffixfr  23810  fmufil  23846  uffclsflim  23918
  Copyright terms: Public domain W3C validator