MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilmax Structured version   Visualization version   GIF version

Theorem ufilmax 22509
Description: Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
Assertion
Ref Expression
ufilmax ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)

Proof of Theorem ufilmax
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹𝐺)
2 filelss 22454 . . . . . 6 ((𝐺 ∈ (Fil‘𝑋) ∧ 𝑥𝐺) → 𝑥𝑋)
32ex 415 . . . . 5 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺𝑥𝑋))
433ad2ant2 1130 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝑋))
5 ufilb 22508 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
653ad2antl1 1181 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
7 simpl3 1189 . . . . . . . . . 10 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → 𝐹𝐺)
87sseld 3966 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → (𝑋𝑥) ∈ 𝐺))
9 filfbas 22450 . . . . . . . . . . . . 13 (𝐺 ∈ (Fil‘𝑋) → 𝐺 ∈ (fBas‘𝑋))
10 fbncp 22441 . . . . . . . . . . . . . 14 ((𝐺 ∈ (fBas‘𝑋) ∧ 𝑥𝐺) → ¬ (𝑋𝑥) ∈ 𝐺)
1110ex 415 . . . . . . . . . . . . 13 (𝐺 ∈ (fBas‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
129, 11syl 17 . . . . . . . . . . . 12 (𝐺 ∈ (Fil‘𝑋) → (𝑥𝐺 → ¬ (𝑋𝑥) ∈ 𝐺))
1312con2d 136 . . . . . . . . . . 11 (𝐺 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
14133ad2ant2 1130 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
1514adantr 483 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐺 → ¬ 𝑥𝐺))
168, 15syld 47 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ 𝐹 → ¬ 𝑥𝐺))
176, 16sylbid 242 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ 𝑥𝐺))
1817con4d 115 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥𝑋) → (𝑥𝐺𝑥𝐹))
1918ex 415 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝑋 → (𝑥𝐺𝑥𝐹)))
2019com23 86 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺 → (𝑥𝑋𝑥𝐹)))
214, 20mpdd 43 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥𝐺𝑥𝐹))
2221ssrdv 3973 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐺𝐹)
231, 22eqssd 3984 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cdif 3933  wss 3936  cfv 6350  fBascfbas 20527  Filcfil 22447  UFilcufil 22501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fv 6358  df-fbas 20536  df-fil 22448  df-ufil 22503
This theorem is referenced by:  isufil2  22510  ufileu  22521  uffixfr  22525  fmufil  22561  uffclsflim  22633
  Copyright terms: Public domain W3C validator