MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitpr Structured version   Visualization version   GIF version

Theorem fzosplitpr 13771
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitpr (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))

Proof of Theorem fzosplitpr
StepHypRef Expression
1 df-2 12303 . . . . . 6 2 = (1 + 1)
21a1i 11 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 2 = (1 + 1))
32oveq2d 7431 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1)))
4 eluzelcn 12862 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
5 1cnd 11237 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
6 add32r 11461 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
74, 5, 5, 6syl3anc 1368 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
83, 7eqtrd 2765 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1))
98oveq2d 7431 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1)))
10 peano2uz 12913 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 1) ∈ (ℤ𝐴))
11 fzosplitsn 13770 . . 3 ((𝐵 + 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
1210, 11syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
13 fzosplitsn 13770 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
1413uneq1d 4155 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}))
15 unass 4160 . . . 4 (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))
1615a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})))
17 df-pr 4627 . . . . . 6 {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)})
1817eqcomi 2734 . . . . 5 ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}
1918a1i 11 . . . 4 (𝐵 ∈ (ℤ𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)})
2019uneq2d 4156 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
2114, 16, 203eqtrd 2769 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
229, 12, 213eqtrd 2769 1 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3938  {csn 4624  {cpr 4626  cfv 6542  (class class class)co 7415  cc 11134  1c1 11137   + caddc 11139  2c2 12295  cuz 12850  ..^cfzo 13657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-fzo 13658
This theorem is referenced by:  fzosplitprm1  13772  clwwlknonex2lem1  29959
  Copyright terms: Public domain W3C validator