MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitpr Structured version   Visualization version   GIF version

Theorem fzosplitpr 13713
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitpr (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))

Proof of Theorem fzosplitpr
StepHypRef Expression
1 df-2 12225 . . . . . 6 2 = (1 + 1)
21a1i 11 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 2 = (1 + 1))
32oveq2d 7385 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1)))
4 eluzelcn 12781 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
5 1cnd 11145 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
6 add32r 11370 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
74, 5, 5, 6syl3anc 1373 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
83, 7eqtrd 2764 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1))
98oveq2d 7385 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1)))
10 peano2uz 12836 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 1) ∈ (ℤ𝐴))
11 fzosplitsn 13712 . . 3 ((𝐵 + 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
1210, 11syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
13 fzosplitsn 13712 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
1413uneq1d 4126 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}))
15 unass 4131 . . . 4 (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))
1615a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})))
17 df-pr 4588 . . . . . 6 {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)})
1817eqcomi 2738 . . . . 5 ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}
1918a1i 11 . . . 4 (𝐵 ∈ (ℤ𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)})
2019uneq2d 4127 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
2114, 16, 203eqtrd 2768 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
229, 12, 213eqtrd 2768 1 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047  2c2 12217  cuz 12769  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  fzosplitprm1  13714  clwwlknonex2lem1  30009
  Copyright terms: Public domain W3C validator