![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosplitpr | Structured version Visualization version GIF version |
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
Ref | Expression |
---|---|
fzosplitpr | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12279 | . . . . . 6 ⊢ 2 = (1 + 1) | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 2 = (1 + 1)) |
3 | 2 | oveq2d 7421 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1))) |
4 | eluzelcn 12838 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) | |
5 | 1cnd 11213 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
6 | add32r 11437 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) | |
7 | 4, 5, 5, 6 | syl3anc 1368 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) |
8 | 3, 7 | eqtrd 2766 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1)) |
9 | 8 | oveq2d 7421 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1))) |
10 | peano2uz 12889 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 1) ∈ (ℤ≥‘𝐴)) | |
11 | fzosplitsn 13746 | . . 3 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) |
13 | fzosplitsn 13746 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | |
14 | 13 | uneq1d 4157 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)})) |
15 | unass 4161 | . . . 4 ⊢ (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))) |
17 | df-pr 4626 | . . . . . 6 ⊢ {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)}) | |
18 | 17 | eqcomi 2735 | . . . . 5 ⊢ ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)} |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}) |
20 | 19 | uneq2d 4158 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
21 | 14, 16, 20 | 3eqtrd 2770 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
22 | 9, 12, 21 | 3eqtrd 2770 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3941 {csn 4623 {cpr 4625 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 1c1 11113 + caddc 11115 2c2 12271 ℤ≥cuz 12826 ..^cfzo 13633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 |
This theorem is referenced by: fzosplitprm1 13748 clwwlknonex2lem1 29869 |
Copyright terms: Public domain | W3C validator |