| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzosplitpr | Structured version Visualization version GIF version | ||
| Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| fzosplitpr | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . . . . 6 ⊢ 2 = (1 + 1) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 2 = (1 + 1)) |
| 3 | 2 | oveq2d 7403 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1))) |
| 4 | eluzelcn 12805 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) | |
| 5 | 1cnd 11169 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 6 | add32r 11394 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) | |
| 7 | 4, 5, 5, 6 | syl3anc 1373 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) |
| 8 | 3, 7 | eqtrd 2764 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1)) |
| 9 | 8 | oveq2d 7403 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1))) |
| 10 | peano2uz 12860 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 1) ∈ (ℤ≥‘𝐴)) | |
| 11 | fzosplitsn 13736 | . . 3 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) |
| 13 | fzosplitsn 13736 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | |
| 14 | 13 | uneq1d 4130 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)})) |
| 15 | unass 4135 | . . . 4 ⊢ (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))) |
| 17 | df-pr 4592 | . . . . . 6 ⊢ {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)}) | |
| 18 | 17 | eqcomi 2738 | . . . . 5 ⊢ ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)} |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}) |
| 20 | 19 | uneq2d 4131 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| 21 | 14, 16, 20 | 3eqtrd 2768 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| 22 | 9, 12, 21 | 3eqtrd 2768 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {csn 4589 {cpr 4591 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 2c2 12241 ℤ≥cuz 12793 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: fzosplitprm1 13738 clwwlknonex2lem1 30036 |
| Copyright terms: Public domain | W3C validator |