| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzosplitpr | Structured version Visualization version GIF version | ||
| Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| Ref | Expression |
|---|---|
| fzosplitpr | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12188 | . . . . . 6 ⊢ 2 = (1 + 1) | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 2 = (1 + 1)) |
| 3 | 2 | oveq2d 7362 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1))) |
| 4 | eluzelcn 12744 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) | |
| 5 | 1cnd 11107 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 6 | add32r 11333 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) | |
| 7 | 4, 5, 5, 6 | syl3anc 1373 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1)) |
| 8 | 3, 7 | eqtrd 2766 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1)) |
| 9 | 8 | oveq2d 7362 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1))) |
| 10 | peano2uz 12799 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 + 1) ∈ (ℤ≥‘𝐴)) | |
| 11 | fzosplitsn 13676 | . . 3 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)})) |
| 13 | fzosplitsn 13676 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | |
| 14 | 13 | uneq1d 4114 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)})) |
| 15 | unass 4119 | . . . 4 ⊢ (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))) |
| 17 | df-pr 4576 | . . . . . 6 ⊢ {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)}) | |
| 18 | 17 | eqcomi 2740 | . . . . 5 ⊢ ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)} |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}) |
| 20 | 19 | uneq2d 4115 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| 21 | 14, 16, 20 | 3eqtrd 2770 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| 22 | 9, 12, 21 | 3eqtrd 2770 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {csn 4573 {cpr 4575 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 2c2 12180 ℤ≥cuz 12732 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: fzosplitprm1 13678 clwwlknonex2lem1 30087 |
| Copyright terms: Public domain | W3C validator |