MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitpr Structured version   Visualization version   GIF version

Theorem fzosplitpr 13149
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitpr (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))

Proof of Theorem fzosplitpr
StepHypRef Expression
1 df-2 11703 . . . . . 6 2 = (1 + 1)
21a1i 11 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 2 = (1 + 1))
32oveq2d 7174 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = (𝐵 + (1 + 1)))
4 eluzelcn 12258 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
5 1cnd 10638 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
6 add32r 10861 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
74, 5, 5, 6syl3anc 1367 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 + 1)) = ((𝐵 + 1) + 1))
83, 7eqtrd 2858 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 2) = ((𝐵 + 1) + 1))
98oveq2d 7174 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = (𝐴..^((𝐵 + 1) + 1)))
10 peano2uz 12304 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵 + 1) ∈ (ℤ𝐴))
11 fzosplitsn 13148 . . 3 ((𝐵 + 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
1210, 11syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴..^((𝐵 + 1) + 1)) = ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}))
13 fzosplitsn 13148 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
1413uneq1d 4140 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}))
15 unass 4144 . . . 4 (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)}))
1615a1i 11 . . 3 (𝐵 ∈ (ℤ𝐴) → (((𝐴..^𝐵) ∪ {𝐵}) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})))
17 df-pr 4572 . . . . . 6 {𝐵, (𝐵 + 1)} = ({𝐵} ∪ {(𝐵 + 1)})
1817eqcomi 2832 . . . . 5 ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)}
1918a1i 11 . . . 4 (𝐵 ∈ (ℤ𝐴) → ({𝐵} ∪ {(𝐵 + 1)}) = {𝐵, (𝐵 + 1)})
2019uneq2d 4141 . . 3 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^𝐵) ∪ ({𝐵} ∪ {(𝐵 + 1)})) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
2114, 16, 203eqtrd 2862 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐴..^(𝐵 + 1)) ∪ {(𝐵 + 1)}) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
229, 12, 213eqtrd 2862 1 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cun 3936  {csn 4569  {cpr 4571  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542  2c2 11695  cuz 12246  ..^cfzo 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037
This theorem is referenced by:  fzosplitprm1  13150  clwwlknonex2lem1  27888
  Copyright terms: Public domain W3C validator