MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Structured version   Visualization version   GIF version

Theorem prunioo 12870
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
2 xrleloe 12540 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
323adant3 1128 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
4 df-pr 4572 . . . . . . . . . . 11 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54uneq2i 4138 . . . . . . . . . 10 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
6 unass 4144 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
75, 6eqtr4i 2849 . . . . . . . . 9 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵})
8 uncom 4131 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
9 snunioo 12867 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
108, 9syl5eq 2870 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
1110uneq1d 4140 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
127, 11syl5eq 2870 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
13123expa 1114 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
14133adantl3 1164 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
15 snunico 12868 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1615adantr 483 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1714, 16eqtrd 2858 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
1817ex 415 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
19 iccid 12786 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
20193ad2ant1 1129 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
2120eqcomd 2829 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → {𝐴} = (𝐴[,]𝐴))
22 uncom 4131 . . . . . . . 8 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
23 un0 4346 . . . . . . . 8 ({𝐴} ∪ ∅) = {𝐴}
2422, 23eqtri 2846 . . . . . . 7 (∅ ∪ {𝐴}) = {𝐴}
25 iooid 12769 . . . . . . . . 9 (𝐴(,)𝐴) = ∅
26 oveq2 7166 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐴) = (𝐴(,)𝐵))
2725, 26syl5eqr 2872 . . . . . . . 8 (𝐴 = 𝐵 → ∅ = (𝐴(,)𝐵))
28 dfsn2 4582 . . . . . . . . 9 {𝐴} = {𝐴, 𝐴}
29 preq2 4672 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
3028, 29syl5eq 2870 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
3127, 30uneq12d 4142 . . . . . . 7 (𝐴 = 𝐵 → (∅ ∪ {𝐴}) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
3224, 31syl5eqr 2872 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
33 oveq2 7166 . . . . . 6 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
3432, 33eqeq12d 2839 . . . . 5 (𝐴 = 𝐵 → ({𝐴} = (𝐴[,]𝐴) ↔ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3521, 34syl5ibcom 247 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 = 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3618, 35jaod 855 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴 < 𝐵𝐴 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
373, 36sylbid 242 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
381, 37mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cun 3936  c0 4293  {csn 4569  {cpr 4571   class class class wbr 5068  (class class class)co 7158  *cxr 10676   < clt 10677  cle 10678  (,)cioo 12741  [,)cico 12743  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-ico 12747  df-icc 12748
This theorem is referenced by:  iccntr  23431  ovolioo  24171  uniiccdif  24181  itgioo  24418  rollelem  24588  dvivthlem1  24607  reasinsin  25476  scvxcvx  25565  eliccioo  30609  iccdifioo  41798  iccdifprioo  41799  cncfiooicclem1  42183  fourierdlem102  42500  fourierdlem114  42512
  Copyright terms: Public domain W3C validator