MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Structured version   Visualization version   GIF version

Theorem prunioo 13418
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
2 xrleloe 13080 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
323adant3 1132 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
4 df-pr 4588 . . . . . . . . . . 11 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54uneq2i 4124 . . . . . . . . . 10 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
6 unass 4131 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴(,)𝐵) ∪ ({𝐴} ∪ {𝐵}))
75, 6eqtr4i 2755 . . . . . . . . 9 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵})
8 uncom 4117 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
9 snunioo 13415 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
108, 9eqtrid 2776 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
1110uneq1d 4126 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (((𝐴(,)𝐵) ∪ {𝐴}) ∪ {𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
127, 11eqtrid 2776 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
13123expa 1118 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
14133adantl3 1169 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ((𝐴[,)𝐵) ∪ {𝐵}))
15 snunico 13416 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1615adantr 480 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
1714, 16eqtrd 2764 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
1817ex 412 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
19 iccid 13327 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
20193ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐴) = {𝐴})
2120eqcomd 2735 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → {𝐴} = (𝐴[,]𝐴))
22 uncom 4117 . . . . . . . 8 (∅ ∪ {𝐴}) = ({𝐴} ∪ ∅)
23 un0 4353 . . . . . . . 8 ({𝐴} ∪ ∅) = {𝐴}
2422, 23eqtri 2752 . . . . . . 7 (∅ ∪ {𝐴}) = {𝐴}
25 iooid 13310 . . . . . . . . 9 (𝐴(,)𝐴) = ∅
26 oveq2 7377 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐴) = (𝐴(,)𝐵))
2725, 26eqtr3id 2778 . . . . . . . 8 (𝐴 = 𝐵 → ∅ = (𝐴(,)𝐵))
28 dfsn2 4598 . . . . . . . . 9 {𝐴} = {𝐴, 𝐴}
29 preq2 4694 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
3028, 29eqtrid 2776 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
3127, 30uneq12d 4128 . . . . . . 7 (𝐴 = 𝐵 → (∅ ∪ {𝐴}) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
3224, 31eqtr3id 2778 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
33 oveq2 7377 . . . . . 6 (𝐴 = 𝐵 → (𝐴[,]𝐴) = (𝐴[,]𝐵))
3432, 33eqeq12d 2745 . . . . 5 (𝐴 = 𝐵 → ({𝐴} = (𝐴[,]𝐴) ↔ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3521, 34syl5ibcom 245 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 = 𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
3618, 35jaod 859 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴 < 𝐵𝐴 = 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
373, 36sylbid 240 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)))
381, 37mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cun 3909  c0 4292  {csn 4585  {cpr 4587   class class class wbr 5102  (class class class)co 7369  *cxr 11183   < clt 11184  cle 11185  (,)cioo 13282  [,)cico 13284  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-ioo 13286  df-ico 13288  df-icc 13289
This theorem is referenced by:  iccntr  24686  ovolioo  25445  uniiccdif  25455  itgioo  25693  rollelem  25869  dvivthlem1  25889  reasinsin  26782  scvxcvx  26872  eliccioo  32824  iccdifioo  45486  iccdifprioo  45487  cncfiooicclem1  45864  fourierdlem102  46179  fourierdlem114  46191
  Copyright terms: Public domain W3C validator