MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlstr Structured version   Visualization version   GIF version

Theorem phlstr 17296
Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr 17275 (which has 4 members), we chain strleun 17095 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
phlfn.h 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
Assertion
Ref Expression
phlstr 𝐻 Struct ⟨1, 8⟩

Proof of Theorem phlstr
StepHypRef Expression
1 df-pr 4624 . . . 4 {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} = ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩})
21uneq2i 4153 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
3 phlfn.h . . 3 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
4 unass 4159 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
52, 3, 43eqtr4i 2762 . 2 𝐻 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩})
6 eqid 2724 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
76lmodstr 17275 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩
8 8nn 12306 . . . 4 8 ∈ ℕ
9 ipndx 17280 . . . 4 (·𝑖‘ndx) = 8
108, 9strle1 17096 . . 3 {⟨(·𝑖‘ndx), , ⟩} Struct ⟨8, 8⟩
11 6lt8 12404 . . 3 6 < 8
127, 10, 11strleun 17095 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) Struct ⟨1, 8⟩
135, 12eqbrtri 5160 1 𝐻 Struct ⟨1, 8⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cun 3939  {csn 4621  {cpr 4623  {ctp 4625  cop 4627   class class class wbr 5139  cfv 6534  1c1 11108  6c6 12270  8c8 12272   Struct cstr 17084  ndxcnx 17131  Basecbs 17149  +gcplusg 17202  Scalarcsca 17205   ·𝑠 cvsca 17206  ·𝑖cip 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-sca 17218  df-vsca 17219  df-ip 17220
This theorem is referenced by:  phlbase  17297  phlplusg  17298  phlsca  17299  phlvsca  17300  phlip  17301
  Copyright terms: Public domain W3C validator