MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlstr Structured version   Visualization version   GIF version

Theorem phlstr 17392
Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr 17371 (which has 4 members), we chain strleun 17191 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
phlfn.h 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
Assertion
Ref Expression
phlstr 𝐻 Struct ⟨1, 8⟩

Proof of Theorem phlstr
StepHypRef Expression
1 df-pr 4634 . . . 4 {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} = ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩})
21uneq2i 4175 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
3 phlfn.h . . 3 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
4 unass 4182 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
52, 3, 43eqtr4i 2773 . 2 𝐻 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩})
6 eqid 2735 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
76lmodstr 17371 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩
8 8nn 12359 . . . 4 8 ∈ ℕ
9 ipndx 17376 . . . 4 (·𝑖‘ndx) = 8
108, 9strle1 17192 . . 3 {⟨(·𝑖‘ndx), , ⟩} Struct ⟨8, 8⟩
11 6lt8 12457 . . 3 6 < 8
127, 10, 11strleun 17191 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) Struct ⟨1, 8⟩
135, 12eqbrtri 5169 1 𝐻 Struct ⟨1, 8⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  {csn 4631  {cpr 4633  {ctp 4635  cop 4637   class class class wbr 5148  cfv 6563  1c1 11154  6c6 12323  8c8 12325   Struct cstr 17180  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  ·𝑖cip 17303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-sca 17314  df-vsca 17315  df-ip 17316
This theorem is referenced by:  phlbase  17393  phlplusg  17394  phlsca  17395  phlvsca  17396  phlip  17397
  Copyright terms: Public domain W3C validator