MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlstr Structured version   Visualization version   GIF version

Theorem phlstr 17232
Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr 17211 (which has 4 members), we chain strleun 17034 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
phlfn.h 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
Assertion
Ref Expression
phlstr 𝐻 Struct ⟨1, 8⟩

Proof of Theorem phlstr
StepHypRef Expression
1 df-pr 4590 . . . 4 {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} = ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩})
21uneq2i 4121 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
3 phlfn.h . . 3 𝐻 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
4 unass 4127 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ ({⟨( ·𝑠 ‘ndx), · ⟩} ∪ {⟨(·𝑖‘ndx), , ⟩}))
52, 3, 43eqtr4i 2771 . 2 𝐻 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩})
6 eqid 2733 . . . 4 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
76lmodstr 17211 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩
8 8nn 12253 . . . 4 8 ∈ ℕ
9 ipndx 17216 . . . 4 (·𝑖‘ndx) = 8
108, 9strle1 17035 . . 3 {⟨(·𝑖‘ndx), , ⟩} Struct ⟨8, 8⟩
11 6lt8 12351 . . 3 6 < 8
127, 10, 11strleun 17034 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑇⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) ∪ {⟨(·𝑖‘ndx), , ⟩}) Struct ⟨1, 8⟩
135, 12eqbrtri 5127 1 𝐻 Struct ⟨1, 8⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cun 3909  {csn 4587  {cpr 4589  {ctp 4591  cop 4593   class class class wbr 5106  cfv 6497  1c1 11057  6c6 12217  8c8 12219   Struct cstr 17023  ndxcnx 17070  Basecbs 17088  +gcplusg 17138  Scalarcsca 17141   ·𝑠 cvsca 17142  ·𝑖cip 17143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-struct 17024  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-sca 17154  df-vsca 17155  df-ip 17156
This theorem is referenced by:  phlbase  17233  phlplusg  17234  phlsca  17235  phlvsca  17236  phlip  17237
  Copyright terms: Public domain W3C validator