| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phlstr | Structured version Visualization version GIF version | ||
| Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr 17221 (which has 4 members), we chain strleun 17060 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| phlfn.h | ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) |
| Ref | Expression |
|---|---|
| phlstr | ⊢ 𝐻 Struct 〈1, 8〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4577 | . . . 4 ⊢ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉} = ({〈( ·𝑠 ‘ndx), · 〉} ∪ {〈(·𝑖‘ndx), , 〉}) | |
| 2 | 1 | uneq2i 4113 | . . 3 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ ({〈( ·𝑠 ‘ndx), · 〉} ∪ {〈(·𝑖‘ndx), , 〉})) |
| 3 | phlfn.h | . . 3 ⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) | |
| 4 | unass 4120 | . . 3 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ∪ {〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ ({〈( ·𝑠 ‘ndx), · 〉} ∪ {〈(·𝑖‘ndx), , 〉})) | |
| 5 | 2, 3, 4 | 3eqtr4i 2763 | . 2 ⊢ 𝐻 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ∪ {〈(·𝑖‘ndx), , 〉}) |
| 6 | eqid 2730 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 7 | 6 | lmodstr 17221 | . . 3 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) Struct 〈1, 6〉 |
| 8 | 8nn 12212 | . . . 4 ⊢ 8 ∈ ℕ | |
| 9 | ipndx 17226 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 10 | 8, 9 | strle1 17061 | . . 3 ⊢ {〈(·𝑖‘ndx), , 〉} Struct 〈8, 8〉 |
| 11 | 6lt8 12305 | . . 3 ⊢ 6 < 8 | |
| 12 | 7, 10, 11 | strleun 17060 | . 2 ⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ∪ {〈(·𝑖‘ndx), , 〉}) Struct 〈1, 8〉 |
| 13 | 5, 12 | eqbrtri 5110 | 1 ⊢ 𝐻 Struct 〈1, 8〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3898 {csn 4574 {cpr 4576 {ctp 4578 〈cop 4580 class class class wbr 5089 ‘cfv 6477 1c1 10999 6c6 12176 8c8 12178 Struct cstr 17049 ndxcnx 17096 Basecbs 17112 +gcplusg 17153 Scalarcsca 17156 ·𝑠 cvsca 17157 ·𝑖cip 17158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-sca 17169 df-vsca 17170 df-ip 17171 |
| This theorem is referenced by: phlbase 17243 phlplusg 17244 phlsca 17245 phlvsca 17246 phlip 17247 |
| Copyright terms: Public domain | W3C validator |