![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lem7 | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9629 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex 7939. (Contributed by NM, 29-Oct-1996.) (Proof shortened by Mario Carneiro, 19-Jan-2013.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lem7 | ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | . . 3 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
2 | inf3lem.2 | . . 3 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
3 | inf3lem.3 | . . 3 ⊢ 𝐴 ∈ V | |
4 | inf3lem.4 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 1, 2, 3, 4 | inf3lem6 9627 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → 𝐹:ω–1-1→𝒫 𝑥) |
6 | vpwex 5368 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
7 | f1dmex 7939 | . 2 ⊢ ((𝐹:ω–1-1→𝒫 𝑥 ∧ 𝒫 𝑥 ∈ V) → ω ∈ V) | |
8 | 5, 6, 7 | sylancl 585 | 1 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 {crab 3426 Vcvv 3468 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 𝒫 cpw 4597 ∪ cuni 4902 ↦ cmpt 5224 ↾ cres 5671 –1-1→wf1 6533 ωcom 7851 reccrdg 8407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-reg 9586 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 |
This theorem is referenced by: inf3 9629 infeq5 9631 |
Copyright terms: Public domain | W3C validator |