MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem7 Structured version   Visualization version   GIF version

Theorem inf3lem7 9659
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9660 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex 7961. (Contributed by NM, 29-Oct-1996.) (Proof shortened by Mario Carneiro, 19-Jan-2013.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem7 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem7
StepHypRef Expression
1 inf3lem.1 . . 3 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . 3 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . 3 𝐴 ∈ V
4 inf3lem.4 . . 3 𝐵 ∈ V
51, 2, 3, 4inf3lem6 9658 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
6 vpwex 5377 . 2 𝒫 𝑥 ∈ V
7 f1dmex 7961 . 2 ((𝐹:ω–1-1→𝒫 𝑥 ∧ 𝒫 𝑥 ∈ V) → ω ∈ V)
85, 6, 7sylancl 584 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  {crab 3418  Vcvv 3461  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909  cmpt 5232  cres 5680  1-1wf1 6546  ωcom 7871  reccrdg 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-reg 9617
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431
This theorem is referenced by:  inf3  9660  infeq5  9662
  Copyright terms: Public domain W3C validator