MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem7 Structured version   Visualization version   GIF version

Theorem inf3lem7 9628
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9629 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex 7939. (Contributed by NM, 29-Oct-1996.) (Proof shortened by Mario Carneiro, 19-Jan-2013.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem7 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem7
StepHypRef Expression
1 inf3lem.1 . . 3 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . 3 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . 3 𝐴 ∈ V
4 inf3lem.4 . . 3 𝐵 ∈ V
51, 2, 3, 4inf3lem6 9627 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
6 vpwex 5368 . 2 𝒫 𝑥 ∈ V
7 f1dmex 7939 . 2 ((𝐹:ω–1-1→𝒫 𝑥 ∧ 𝒫 𝑥 ∈ V) → ω ∈ V)
85, 6, 7sylancl 585 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ω ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  {crab 3426  Vcvv 3468  cin 3942  wss 3943  c0 4317  𝒫 cpw 4597   cuni 4902  cmpt 5224  cres 5671  1-1wf1 6533  ωcom 7851  reccrdg 8407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408
This theorem is referenced by:  inf3  9629  infeq5  9631
  Copyright terms: Public domain W3C validator