![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numthcor | Structured version Visualization version GIF version |
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
numthcor | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5141 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
2 | 1 | rexbidv 3170 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ≺ 𝑥 ↔ ∃𝑥 ∈ On 𝐴 ≺ 𝑥)) |
3 | vpwex 5365 | . . . 4 ⊢ 𝒫 𝑦 ∈ V | |
4 | 3 | numth2 10461 | . . 3 ⊢ ∃𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 |
5 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | 5 | canth2 9125 | . . . . 5 ⊢ 𝑦 ≺ 𝒫 𝑦 |
7 | ensym 8994 | . . . . 5 ⊢ (𝑥 ≈ 𝒫 𝑦 → 𝒫 𝑦 ≈ 𝑥) | |
8 | sdomentr 9106 | . . . . 5 ⊢ ((𝑦 ≺ 𝒫 𝑦 ∧ 𝒫 𝑦 ≈ 𝑥) → 𝑦 ≺ 𝑥) | |
9 | 6, 7, 8 | sylancr 586 | . . . 4 ⊢ (𝑥 ≈ 𝒫 𝑦 → 𝑦 ≺ 𝑥) |
10 | 9 | reximi 3076 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 → ∃𝑥 ∈ On 𝑦 ≺ 𝑥) |
11 | 4, 10 | ax-mp 5 | . 2 ⊢ ∃𝑥 ∈ On 𝑦 ≺ 𝑥 |
12 | 2, 11 | vtoclg 3535 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 𝒫 cpw 4594 class class class wbr 5138 Oncon0 6354 ≈ cen 8931 ≺ csdm 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-ac2 10453 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-card 9929 df-ac 10106 |
This theorem is referenced by: cardmin 10554 |
Copyright terms: Public domain | W3C validator |