MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numthcor Structured version   Visualization version   GIF version

Theorem numthcor 10447
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
numthcor (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem numthcor
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21rexbidv 3157 . 2 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦𝑥 ↔ ∃𝑥 ∈ On 𝐴𝑥))
3 vpwex 5332 . . . 4 𝒫 𝑦 ∈ V
43numth2 10424 . . 3 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦
5 vex 3451 . . . . . 6 𝑦 ∈ V
65canth2 9094 . . . . 5 𝑦 ≺ 𝒫 𝑦
7 ensym 8974 . . . . 5 (𝑥 ≈ 𝒫 𝑦 → 𝒫 𝑦𝑥)
8 sdomentr 9075 . . . . 5 ((𝑦 ≺ 𝒫 𝑦 ∧ 𝒫 𝑦𝑥) → 𝑦𝑥)
96, 7, 8sylancr 587 . . . 4 (𝑥 ≈ 𝒫 𝑦𝑦𝑥)
109reximi 3067 . . 3 (∃𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 → ∃𝑥 ∈ On 𝑦𝑥)
114, 10ax-mp 5 . 2 𝑥 ∈ On 𝑦𝑥
122, 11vtoclg 3520 1 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  𝒫 cpw 4563   class class class wbr 5107  Oncon0 6332  cen 8915  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892  df-ac 10069
This theorem is referenced by:  cardmin  10517
  Copyright terms: Public domain W3C validator