MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numthcor Structured version   Visualization version   GIF version

Theorem numthcor 10484
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
numthcor (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem numthcor
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5141 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21rexbidv 3170 . 2 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦𝑥 ↔ ∃𝑥 ∈ On 𝐴𝑥))
3 vpwex 5365 . . . 4 𝒫 𝑦 ∈ V
43numth2 10461 . . 3 𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦
5 vex 3470 . . . . . 6 𝑦 ∈ V
65canth2 9125 . . . . 5 𝑦 ≺ 𝒫 𝑦
7 ensym 8994 . . . . 5 (𝑥 ≈ 𝒫 𝑦 → 𝒫 𝑦𝑥)
8 sdomentr 9106 . . . . 5 ((𝑦 ≺ 𝒫 𝑦 ∧ 𝒫 𝑦𝑥) → 𝑦𝑥)
96, 7, 8sylancr 586 . . . 4 (𝑥 ≈ 𝒫 𝑦𝑦𝑥)
109reximi 3076 . . 3 (∃𝑥 ∈ On 𝑥 ≈ 𝒫 𝑦 → ∃𝑥 ∈ On 𝑦𝑥)
114, 10ax-mp 5 . 2 𝑥 ∈ On 𝑦𝑥
122, 11vtoclg 3535 1 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wrex 3062  𝒫 cpw 4594   class class class wbr 5138  Oncon0 6354  cen 8931  csdm 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-ac2 10453
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-card 9929  df-ac 10106
This theorem is referenced by:  cardmin  10554
  Copyright terms: Public domain W3C validator