Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunifi | Structured version Visualization version GIF version |
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ordunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7496 | . . . . . 6 ⊢ E We On | |
2 | weso 5515 | . . . . . 6 ⊢ ( E We On → E Or On) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ E Or On |
4 | soss 5462 | . . . . 5 ⊢ (𝐴 ⊆ On → ( E Or On → E Or 𝐴)) | |
5 | 3, 4 | mpi 20 | . . . 4 ⊢ (𝐴 ⊆ On → E Or 𝐴) |
6 | fimax2g 8797 | . . . 4 ⊢ (( E Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) | |
7 | 5, 6 | syl3an1 1160 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
8 | ssel2 3887 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
9 | 8 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
10 | ssel2 3887 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
11 | 10 | adantr 484 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
12 | epel 5438 | . . . . . . . . . 10 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
13 | 12 | notbii 323 | . . . . . . . . 9 ⊢ (¬ 𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) |
14 | ontri1 6203 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) | |
15 | 13, 14 | bitr4id 293 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
16 | 9, 11, 15 | syl2anc 587 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
17 | 16 | ralbidva 3125 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
18 | unissb 4832 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | bitr4di 292 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥)) |
20 | 19 | rexbidva 3220 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
21 | 20 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
22 | 7, 21 | mpbid 235 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥) |
23 | elssuni 4830 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
24 | eqss 3907 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 ↔ (𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥)) | |
25 | eleq1 2839 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) | |
26 | 25 | biimpcd 252 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
27 | 24, 26 | syl5bir 246 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥) → ∪ 𝐴 ∈ 𝐴)) |
28 | 23, 27 | mpand 694 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
29 | 28 | rexlimiv 3204 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴) |
30 | 22, 29 | syl 17 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ⊆ wss 3858 ∅c0 4225 ∪ cuni 4798 class class class wbr 5032 E cep 5434 Or wor 5442 We wwe 5482 Oncon0 6169 Fincfn 8527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-en 8528 df-fin 8531 |
This theorem is referenced by: nnunifi 8802 oemapvali 9180 ttukeylem6 9974 limsucncmpi 34183 |
Copyright terms: Public domain | W3C validator |