MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunifi Structured version   Visualization version   GIF version

Theorem ordunifi 9308
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ordunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem ordunifi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7777 . . . . . 6 E We On
2 weso 5656 . . . . . 6 ( E We On → E Or On)
31, 2ax-mp 5 . . . . 5 E Or On
4 soss 5592 . . . . 5 (𝐴 ⊆ On → ( E Or On → E Or 𝐴))
53, 4mpi 20 . . . 4 (𝐴 ⊆ On → E Or 𝐴)
6 fimax2g 9304 . . . 4 (( E Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
75, 6syl3an1 1163 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
8 ssel2 3958 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
98adantlr 715 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
10 ssel2 3958 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
1110adantr 480 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
12 epel 5567 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
1312notbii 320 . . . . . . . . 9 𝑥 E 𝑦 ↔ ¬ 𝑥𝑦)
14 ontri1 6397 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
1513, 14bitr4id 290 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦𝑦𝑥))
169, 11, 15syl2anc 584 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (¬ 𝑥 E 𝑦𝑦𝑥))
1716ralbidva 3163 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦𝐴 𝑦𝑥))
18 unissb 4919 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
1917, 18bitr4di 289 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 𝐴𝑥))
2019rexbidva 3164 . . . 4 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
21203ad2ant1 1133 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
227, 21mpbid 232 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 𝐴𝑥)
23 elssuni 4917 . . . 4 (𝑥𝐴𝑥 𝐴)
24 eqss 3979 . . . . 5 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
25 eleq1 2821 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴 𝐴𝐴))
2625biimpcd 249 . . . . 5 (𝑥𝐴 → (𝑥 = 𝐴 𝐴𝐴))
2724, 26biimtrrid 243 . . . 4 (𝑥𝐴 → ((𝑥 𝐴 𝐴𝑥) → 𝐴𝐴))
2823, 27mpand 695 . . 3 (𝑥𝐴 → ( 𝐴𝑥 𝐴𝐴))
2928rexlimiv 3135 . 2 (∃𝑥𝐴 𝐴𝑥 𝐴𝐴)
3022, 29syl 17 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  wss 3931  c0 4313   cuni 4887   class class class wbr 5123   E cep 5563   Or wor 5571   We wwe 5616  Oncon0 6363  Fincfn 8967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-en 8968  df-fin 8971
This theorem is referenced by:  nnunifi  9309  oemapvali  9706  ttukeylem6  10536  limsucncmpi  36405  onfisupcl  43225  onsucunifi  43345
  Copyright terms: Public domain W3C validator