| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunifi | Structured version Visualization version GIF version | ||
| Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| Ref | Expression |
|---|---|
| ordunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon 7777 | . . . . . 6 ⊢ E We On | |
| 2 | weso 5656 | . . . . . 6 ⊢ ( E We On → E Or On) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ E Or On |
| 4 | soss 5592 | . . . . 5 ⊢ (𝐴 ⊆ On → ( E Or On → E Or 𝐴)) | |
| 5 | 3, 4 | mpi 20 | . . . 4 ⊢ (𝐴 ⊆ On → E Or 𝐴) |
| 6 | fimax2g 9304 | . . . 4 ⊢ (( E Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) | |
| 7 | 5, 6 | syl3an1 1163 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
| 8 | ssel2 3958 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
| 9 | 8 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
| 10 | ssel2 3958 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
| 12 | epel 5567 | . . . . . . . . . 10 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 13 | 12 | notbii 320 | . . . . . . . . 9 ⊢ (¬ 𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) |
| 14 | ontri1 6397 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) | |
| 15 | 13, 14 | bitr4id 290 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
| 16 | 9, 11, 15 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
| 17 | 16 | ralbidva 3163 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
| 18 | unissb 4919 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
| 19 | 17, 18 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥)) |
| 20 | 19 | rexbidva 3164 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
| 21 | 20 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
| 22 | 7, 21 | mpbid 232 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥) |
| 23 | elssuni 4917 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 24 | eqss 3979 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 ↔ (𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥)) | |
| 25 | eleq1 2821 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) | |
| 26 | 25 | biimpcd 249 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
| 27 | 24, 26 | biimtrrid 243 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥) → ∪ 𝐴 ∈ 𝐴)) |
| 28 | 23, 27 | mpand 695 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
| 29 | 28 | rexlimiv 3135 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴) |
| 30 | 22, 29 | syl 17 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 class class class wbr 5123 E cep 5563 Or wor 5571 We wwe 5616 Oncon0 6363 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-en 8968 df-fin 8971 |
| This theorem is referenced by: nnunifi 9309 oemapvali 9706 ttukeylem6 10536 limsucncmpi 36405 onfisupcl 43225 onsucunifi 43345 |
| Copyright terms: Public domain | W3C validator |