MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunifi Structured version   Visualization version   GIF version

Theorem ordunifi 8756
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ordunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem ordunifi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7486 . . . . . 6 E We On
2 weso 5539 . . . . . 6 ( E We On → E Or On)
31, 2ax-mp 5 . . . . 5 E Or On
4 soss 5486 . . . . 5 (𝐴 ⊆ On → ( E Or On → E Or 𝐴))
53, 4mpi 20 . . . 4 (𝐴 ⊆ On → E Or 𝐴)
6 fimax2g 8752 . . . 4 (( E Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
75, 6syl3an1 1155 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
8 ssel2 3959 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
98adantlr 711 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
10 ssel2 3959 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
1110adantr 481 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
12 ontri1 6218 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
13 epel 5462 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
1413notbii 321 . . . . . . . . 9 𝑥 E 𝑦 ↔ ¬ 𝑥𝑦)
1512, 14syl6rbbr 291 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦𝑦𝑥))
169, 11, 15syl2anc 584 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (¬ 𝑥 E 𝑦𝑦𝑥))
1716ralbidva 3193 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦𝐴 𝑦𝑥))
18 unissb 4861 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
1917, 18syl6bbr 290 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 𝐴𝑥))
2019rexbidva 3293 . . . 4 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
21203ad2ant1 1125 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
227, 21mpbid 233 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 𝐴𝑥)
23 elssuni 4859 . . . 4 (𝑥𝐴𝑥 𝐴)
24 eqss 3979 . . . . 5 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
25 eleq1 2897 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴 𝐴𝐴))
2625biimpcd 250 . . . . 5 (𝑥𝐴 → (𝑥 = 𝐴 𝐴𝐴))
2724, 26syl5bir 244 . . . 4 (𝑥𝐴 → ((𝑥 𝐴 𝐴𝑥) → 𝐴𝐴))
2823, 27mpand 691 . . 3 (𝑥𝐴 → ( 𝐴𝑥 𝐴𝐴))
2928rexlimiv 3277 . 2 (∃𝑥𝐴 𝐴𝑥 𝐴𝐴)
3022, 29syl 17 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  wss 3933  c0 4288   cuni 4830   class class class wbr 5057   E cep 5457   Or wor 5466   We wwe 5506  Oncon0 6184  Fincfn 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-er 8278  df-en 8498  df-fin 8501
This theorem is referenced by:  nnunifi  8757  oemapvali  9135  ttukeylem6  9924  limsucncmpi  33690
  Copyright terms: Public domain W3C validator