![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunifi | Structured version Visualization version GIF version |
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ordunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7353 | . . . . . 6 ⊢ E We On | |
2 | weso 5434 | . . . . . 6 ⊢ ( E We On → E Or On) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ E Or On |
4 | soss 5381 | . . . . 5 ⊢ (𝐴 ⊆ On → ( E Or On → E Or 𝐴)) | |
5 | 3, 4 | mpi 20 | . . . 4 ⊢ (𝐴 ⊆ On → E Or 𝐴) |
6 | fimax2g 8610 | . . . 4 ⊢ (( E Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) | |
7 | 5, 6 | syl3an1 1156 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
8 | ssel2 3884 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
9 | 8 | adantlr 711 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
10 | ssel2 3884 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
11 | 10 | adantr 481 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
12 | ontri1 6100 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) | |
13 | epel 5357 | . . . . . . . . . 10 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
14 | 13 | notbii 321 | . . . . . . . . 9 ⊢ (¬ 𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) |
15 | 12, 14 | syl6rbbr 291 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
16 | 9, 11, 15 | syl2anc 584 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
17 | 16 | ralbidva 3163 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
18 | unissb 4776 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | syl6bbr 290 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥)) |
20 | 19 | rexbidva 3259 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
21 | 20 | 3ad2ant1 1126 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
22 | 7, 21 | mpbid 233 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥) |
23 | elssuni 4774 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
24 | eqss 3904 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 ↔ (𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥)) | |
25 | eleq1 2870 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) | |
26 | 25 | biimpcd 250 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
27 | 24, 26 | syl5bir 244 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥) → ∪ 𝐴 ∈ 𝐴)) |
28 | 23, 27 | mpand 691 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
29 | 28 | rexlimiv 3243 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴) |
30 | 22, 29 | syl 17 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∀wral 3105 ∃wrex 3106 ⊆ wss 3859 ∅c0 4211 ∪ cuni 4745 class class class wbr 4962 E cep 5352 Or wor 5361 We wwe 5401 Oncon0 6066 Fincfn 8357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-om 7437 df-1o 7953 df-er 8139 df-en 8358 df-fin 8361 |
This theorem is referenced by: nnunifi 8615 oemapvali 8993 ttukeylem6 9782 limsucncmpi 33403 |
Copyright terms: Public domain | W3C validator |