![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunifi | Structured version Visualization version GIF version |
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
Ref | Expression |
---|---|
ordunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon 7755 | . . . . . 6 ⊢ E We On | |
2 | weso 5657 | . . . . . 6 ⊢ ( E We On → E Or On) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ E Or On |
4 | soss 5598 | . . . . 5 ⊢ (𝐴 ⊆ On → ( E Or On → E Or 𝐴)) | |
5 | 3, 4 | mpi 20 | . . . 4 ⊢ (𝐴 ⊆ On → E Or 𝐴) |
6 | fimax2g 9284 | . . . 4 ⊢ (( E Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) | |
7 | 5, 6 | syl3an1 1160 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
8 | ssel2 3969 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) | |
9 | 8 | adantlr 712 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
10 | ssel2 3969 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
12 | epel 5573 | . . . . . . . . . 10 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
13 | 12 | notbii 320 | . . . . . . . . 9 ⊢ (¬ 𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) |
14 | ontri1 6388 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) | |
15 | 13, 14 | bitr4id 290 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
16 | 9, 11, 15 | syl2anc 583 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
17 | 16 | ralbidva 3167 | . . . . . 6 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
18 | unissb 4933 | . . . . . 6 ⊢ (∪ 𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
19 | 17, 18 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥)) |
20 | 19 | rexbidva 3168 | . . . 4 ⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
21 | 20 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
22 | 7, 21 | mpbid 231 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥) |
23 | elssuni 4931 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
24 | eqss 3989 | . . . . 5 ⊢ (𝑥 = ∪ 𝐴 ↔ (𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥)) | |
25 | eleq1 2813 | . . . . . 6 ⊢ (𝑥 = ∪ 𝐴 → (𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) | |
26 | 25 | biimpcd 248 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = ∪ 𝐴 → ∪ 𝐴 ∈ 𝐴)) |
27 | 24, 26 | biimtrrid 242 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑥) → ∪ 𝐴 ∈ 𝐴)) |
28 | 23, 27 | mpand 692 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
29 | 28 | rexlimiv 3140 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴) |
30 | 22, 29 | syl 17 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ⊆ wss 3940 ∅c0 4314 ∪ cuni 4899 class class class wbr 5138 E cep 5569 Or wor 5577 We wwe 5620 Oncon0 6354 Fincfn 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-en 8935 df-fin 8938 |
This theorem is referenced by: nnunifi 9289 oemapvali 9674 ttukeylem6 10504 limsucncmpi 35786 onfisupcl 42454 onsucunifi 42575 |
Copyright terms: Public domain | W3C validator |