MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunifi Structured version   Visualization version   GIF version

Theorem ordunifi 9244
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ordunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem ordunifi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7754 . . . . . 6 E We On
2 weso 5632 . . . . . 6 ( E We On → E Or On)
31, 2ax-mp 5 . . . . 5 E Or On
4 soss 5569 . . . . 5 (𝐴 ⊆ On → ( E Or On → E Or 𝐴))
53, 4mpi 20 . . . 4 (𝐴 ⊆ On → E Or 𝐴)
6 fimax2g 9240 . . . 4 (( E Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
75, 6syl3an1 1163 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
8 ssel2 3944 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
98adantlr 715 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
10 ssel2 3944 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
1110adantr 480 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
12 epel 5544 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
1312notbii 320 . . . . . . . . 9 𝑥 E 𝑦 ↔ ¬ 𝑥𝑦)
14 ontri1 6369 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
1513, 14bitr4id 290 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦𝑦𝑥))
169, 11, 15syl2anc 584 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (¬ 𝑥 E 𝑦𝑦𝑥))
1716ralbidva 3155 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦𝐴 𝑦𝑥))
18 unissb 4906 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
1917, 18bitr4di 289 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 𝐴𝑥))
2019rexbidva 3156 . . . 4 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
21203ad2ant1 1133 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
227, 21mpbid 232 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 𝐴𝑥)
23 elssuni 4904 . . . 4 (𝑥𝐴𝑥 𝐴)
24 eqss 3965 . . . . 5 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
25 eleq1 2817 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴 𝐴𝐴))
2625biimpcd 249 . . . . 5 (𝑥𝐴 → (𝑥 = 𝐴 𝐴𝐴))
2724, 26biimtrrid 243 . . . 4 (𝑥𝐴 → ((𝑥 𝐴 𝐴𝑥) → 𝐴𝐴))
2823, 27mpand 695 . . 3 (𝑥𝐴 → ( 𝐴𝑥 𝐴𝐴))
2928rexlimiv 3128 . 2 (∃𝑥𝐴 𝐴𝑥 𝐴𝐴)
3022, 29syl 17 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   cuni 4874   class class class wbr 5110   E cep 5540   Or wor 5548   We wwe 5593  Oncon0 6335  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-en 8922  df-fin 8925
This theorem is referenced by:  nnunifi  9245  oemapvali  9644  ttukeylem6  10474  limsucncmpi  36440  onfisupcl  43246  onsucunifi  43366
  Copyright terms: Public domain W3C validator