MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunifi Structured version   Visualization version   GIF version

Theorem ordunifi 8801
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ordunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem ordunifi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 7496 . . . . . 6 E We On
2 weso 5515 . . . . . 6 ( E We On → E Or On)
31, 2ax-mp 5 . . . . 5 E Or On
4 soss 5462 . . . . 5 (𝐴 ⊆ On → ( E Or On → E Or 𝐴))
53, 4mpi 20 . . . 4 (𝐴 ⊆ On → E Or 𝐴)
6 fimax2g 8797 . . . 4 (( E Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
75, 6syl3an1 1160 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦)
8 ssel2 3887 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
98adantlr 714 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ On)
10 ssel2 3887 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
1110adantr 484 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ On)
12 epel 5438 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
1312notbii 323 . . . . . . . . 9 𝑥 E 𝑦 ↔ ¬ 𝑥𝑦)
14 ontri1 6203 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
1513, 14bitr4id 293 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦𝑦𝑥))
169, 11, 15syl2anc 587 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (¬ 𝑥 E 𝑦𝑦𝑥))
1716ralbidva 3125 . . . . . 6 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦𝐴 𝑦𝑥))
18 unissb 4832 . . . . . 6 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
1917, 18bitr4di 292 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 E 𝑦 𝐴𝑥))
2019rexbidva 3220 . . . 4 (𝐴 ⊆ On → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
21203ad2ant1 1130 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥𝐴 𝐴𝑥))
227, 21mpbid 235 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 𝐴𝑥)
23 elssuni 4830 . . . 4 (𝑥𝐴𝑥 𝐴)
24 eqss 3907 . . . . 5 (𝑥 = 𝐴 ↔ (𝑥 𝐴 𝐴𝑥))
25 eleq1 2839 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴 𝐴𝐴))
2625biimpcd 252 . . . . 5 (𝑥𝐴 → (𝑥 = 𝐴 𝐴𝐴))
2724, 26syl5bir 246 . . . 4 (𝑥𝐴 → ((𝑥 𝐴 𝐴𝑥) → 𝐴𝐴))
2823, 27mpand 694 . . 3 (𝑥𝐴 → ( 𝐴𝑥 𝐴𝐴))
2928rexlimiv 3204 . 2 (∃𝑥𝐴 𝐴𝑥 𝐴𝐴)
3022, 29syl 17 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3858  c0 4225   cuni 4798   class class class wbr 5032   E cep 5434   Or wor 5442   We wwe 5482  Oncon0 6169  Fincfn 8527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-en 8528  df-fin 8531
This theorem is referenced by:  nnunifi  8802  oemapvali  9180  ttukeylem6  9974  limsucncmpi  34183
  Copyright terms: Public domain W3C validator