Step | Hyp | Ref
| Expression |
1 | | epweon 7625 |
. . . . . 6
⊢ E We
On |
2 | | weso 5580 |
. . . . . 6
⊢ ( E We On
→ E Or On) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢ E Or
On |
4 | | soss 5523 |
. . . . 5
⊢ (𝐴 ⊆ On → ( E Or On
→ E Or 𝐴)) |
5 | 3, 4 | mpi 20 |
. . . 4
⊢ (𝐴 ⊆ On → E Or 𝐴) |
6 | | fimax2g 9060 |
. . . 4
⊢ (( E Or
𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
7 | 5, 6 | syl3an1 1162 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦) |
8 | | ssel2 3916 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
9 | 8 | adantlr 712 |
. . . . . . . 8
⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
10 | | ssel2 3916 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
11 | 10 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ On) |
12 | | epel 5498 |
. . . . . . . . . 10
⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) |
13 | 12 | notbii 320 |
. . . . . . . . 9
⊢ (¬
𝑥 E 𝑦 ↔ ¬ 𝑥 ∈ 𝑦) |
14 | | ontri1 6300 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝑦)) |
15 | 13, 14 | bitr4id 290 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
16 | 9, 11, 15 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑥 E 𝑦 ↔ 𝑦 ⊆ 𝑥)) |
17 | 16 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
18 | | unissb 4873 |
. . . . . 6
⊢ (∪ 𝐴
⊆ 𝑥 ↔
∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
19 | 17, 18 | bitr4di 289 |
. . . . 5
⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∪ 𝐴 ⊆ 𝑥)) |
20 | 19 | rexbidva 3225 |
. . . 4
⊢ (𝐴 ⊆ On → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
21 | 20 | 3ad2ant1 1132 |
. . 3
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 E 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑥)) |
22 | 7, 21 | mpbid 231 |
. 2
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 ∪
𝐴 ⊆ 𝑥) |
23 | | elssuni 4871 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) |
24 | | eqss 3936 |
. . . . 5
⊢ (𝑥 = ∪
𝐴 ↔ (𝑥 ⊆ ∪ 𝐴
∧ ∪ 𝐴 ⊆ 𝑥)) |
25 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = ∪
𝐴 → (𝑥 ∈ 𝐴 ↔ ∪ 𝐴 ∈ 𝐴)) |
26 | 25 | biimpcd 248 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (𝑥 = ∪ 𝐴 → ∪ 𝐴
∈ 𝐴)) |
27 | 24, 26 | syl5bir 242 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ⊆ ∪ 𝐴 ∧ ∪ 𝐴
⊆ 𝑥) → ∪ 𝐴
∈ 𝐴)) |
28 | 23, 27 | mpand 692 |
. . 3
⊢ (𝑥 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ∈ 𝐴)) |
29 | 28 | rexlimiv 3209 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∪ 𝐴
⊆ 𝑥 → ∪ 𝐴
∈ 𝐴) |
30 | 22, 29 | syl 17 |
1
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴
∈ 𝐴) |