| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmeterval | Structured version Visualization version GIF version | ||
| Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| xmeterval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 24339 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | ffn 6736 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 3 | elpreima 7078 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) |
| 5 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 6 | 5 | breqi 5149 | . . 3 ⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(◡𝐷 “ ℝ)𝐵) |
| 7 | df-br 5144 | . . 3 ⊢ (𝐴(◡𝐷 “ ℝ)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) |
| 9 | df-3an 1089 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ)) | |
| 10 | opelxp 5721 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
| 11 | 10 | bicomi 224 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 12 | df-ov 7434 | . . . . 5 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 13 | 12 | eleq1i 2832 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ) |
| 14 | 11, 13 | anbi12i 628 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 15 | 9, 14 | bitri 275 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 16 | 4, 8, 15 | 3bitr4g 314 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 〈cop 4632 class class class wbr 5143 × cxp 5683 ◡ccnv 5684 “ cima 5688 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 ℝ*cxr 11294 ∞Metcxmet 21349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-xr 11299 df-xmet 21357 |
| This theorem is referenced by: xmeter 24443 xmetec 24444 xmetresbl 24447 xrsblre 24833 isbndx 37789 |
| Copyright terms: Public domain | W3C validator |