![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmeterval | Structured version Visualization version GIF version |
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | β’ βΌ = (β‘π· β β) |
Ref | Expression |
---|---|
xmeterval | β’ (π· β (βMetβπ) β (π΄ βΌ π΅ β (π΄ β π β§ π΅ β π β§ (π΄π·π΅) β β))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 24156 | . . 3 β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) | |
2 | ffn 6707 | . . 3 β’ (π·:(π Γ π)βΆβ* β π· Fn (π Γ π)) | |
3 | elpreima 7049 | . . 3 β’ (π· Fn (π Γ π) β (β¨π΄, π΅β© β (β‘π· β β) β (β¨π΄, π΅β© β (π Γ π) β§ (π·ββ¨π΄, π΅β©) β β))) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π· β (βMetβπ) β (β¨π΄, π΅β© β (β‘π· β β) β (β¨π΄, π΅β© β (π Γ π) β§ (π·ββ¨π΄, π΅β©) β β))) |
5 | xmeter.1 | . . . 4 β’ βΌ = (β‘π· β β) | |
6 | 5 | breqi 5144 | . . 3 β’ (π΄ βΌ π΅ β π΄(β‘π· β β)π΅) |
7 | df-br 5139 | . . 3 β’ (π΄(β‘π· β β)π΅ β β¨π΄, π΅β© β (β‘π· β β)) | |
8 | 6, 7 | bitri 275 | . 2 β’ (π΄ βΌ π΅ β β¨π΄, π΅β© β (β‘π· β β)) |
9 | df-3an 1086 | . . 3 β’ ((π΄ β π β§ π΅ β π β§ (π΄π·π΅) β β) β ((π΄ β π β§ π΅ β π) β§ (π΄π·π΅) β β)) | |
10 | opelxp 5702 | . . . . 5 β’ (β¨π΄, π΅β© β (π Γ π) β (π΄ β π β§ π΅ β π)) | |
11 | 10 | bicomi 223 | . . . 4 β’ ((π΄ β π β§ π΅ β π) β β¨π΄, π΅β© β (π Γ π)) |
12 | df-ov 7404 | . . . . 5 β’ (π΄π·π΅) = (π·ββ¨π΄, π΅β©) | |
13 | 12 | eleq1i 2816 | . . . 4 β’ ((π΄π·π΅) β β β (π·ββ¨π΄, π΅β©) β β) |
14 | 11, 13 | anbi12i 626 | . . 3 β’ (((π΄ β π β§ π΅ β π) β§ (π΄π·π΅) β β) β (β¨π΄, π΅β© β (π Γ π) β§ (π·ββ¨π΄, π΅β©) β β)) |
15 | 9, 14 | bitri 275 | . 2 β’ ((π΄ β π β§ π΅ β π β§ (π΄π·π΅) β β) β (β¨π΄, π΅β© β (π Γ π) β§ (π·ββ¨π΄, π΅β©) β β)) |
16 | 4, 8, 15 | 3bitr4g 314 | 1 β’ (π· β (βMetβπ) β (π΄ βΌ π΅ β (π΄ β π β§ π΅ β π β§ (π΄π·π΅) β β))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β¨cop 4626 class class class wbr 5138 Γ cxp 5664 β‘ccnv 5665 β cima 5669 Fn wfn 6528 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcr 11104 β*cxr 11243 βMetcxmet 21212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-xr 11248 df-xmet 21220 |
This theorem is referenced by: xmeter 24260 xmetec 24261 xmetresbl 24264 xrsblre 24648 isbndx 37106 |
Copyright terms: Public domain | W3C validator |