| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmeterval | Structured version Visualization version GIF version | ||
| Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| xmeterval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 24215 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | ffn 6652 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 3 | elpreima 6992 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) |
| 5 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 6 | 5 | breqi 5098 | . . 3 ⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(◡𝐷 “ ℝ)𝐵) |
| 7 | df-br 5093 | . . 3 ⊢ (𝐴(◡𝐷 “ ℝ)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) |
| 9 | df-3an 1088 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ)) | |
| 10 | opelxp 5655 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
| 11 | 10 | bicomi 224 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 12 | df-ov 7352 | . . . . 5 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 13 | 12 | eleq1i 2819 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ) |
| 14 | 11, 13 | anbi12i 628 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 15 | 9, 14 | bitri 275 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 16 | 4, 8, 15 | 3bitr4g 314 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 × cxp 5617 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 ℝ*cxr 11148 ∞Metcxmet 21246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-xr 11153 df-xmet 21254 |
| This theorem is referenced by: xmeter 24319 xmetec 24320 xmetresbl 24323 xrsblre 24698 isbndx 37766 |
| Copyright terms: Public domain | W3C validator |