MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmeterval Structured version   Visualization version   GIF version

Theorem xmeterval 23566
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeterval (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 23463 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 ffn 6596 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
3 elpreima 6929 . . 3 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
41, 2, 33syl 18 . 2 (𝐷 ∈ (∞Met‘𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
5 xmeter.1 . . . 4 = (𝐷 “ ℝ)
65breqi 5084 . . 3 (𝐴 𝐵𝐴(𝐷 “ ℝ)𝐵)
7 df-br 5079 . . 3 (𝐴(𝐷 “ ℝ)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
86, 7bitri 274 . 2 (𝐴 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
9 df-3an 1087 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ))
10 opelxp 5624 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ↔ (𝐴𝑋𝐵𝑋))
1110bicomi 223 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
12 df-ov 7271 . . . . 5 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
1312eleq1i 2830 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)
1411, 13anbi12i 626 . . 3 (((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
159, 14bitri 274 . 2 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
164, 8, 153bitr4g 313 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  cop 4572   class class class wbr 5078   × cxp 5586  ccnv 5587  cima 5591   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  cr 10854  *cxr 10992  ∞Metcxmet 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-xr 10997  df-xmet 20571
This theorem is referenced by:  xmeter  23567  xmetec  23568  xmetresbl  23571  xrsblre  23955  isbndx  35919
  Copyright terms: Public domain W3C validator