Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Structured version   Visualization version   GIF version

Theorem rmxypairf1o 42904
Description: The function used to extract rational and irrational parts in df-rmx 42895 and df-rmy 42896 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Distinct variable group:   𝑏,𝑐,𝑑,𝑎,𝐴

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 7382 . . . 4 ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ∈ V
2 eqid 2729 . . . 4 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
31, 2fnmpti 6625 . . 3 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ)
43a1i 11 . 2 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ))
52rnmpt 5899 . . 3 ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))}
6 vex 3440 . . . . . . . . . 10 𝑐 ∈ V
7 vex 3440 . . . . . . . . . 10 𝑑 ∈ V
86, 7op1std 7934 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → (1st𝑏) = 𝑐)
96, 7op2ndd 7935 . . . . . . . . . 10 (𝑏 = ⟨𝑐, 𝑑⟩ → (2nd𝑏) = 𝑑)
109oveq2d 7365 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · 𝑑))
118, 10oveq12d 7367 . . . . . . . 8 (𝑏 = ⟨𝑐, 𝑑⟩ → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1211eqeq2d 2740 . . . . . . 7 (𝑏 = ⟨𝑐, 𝑑⟩ → (𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))))
1312rexxp 5785 . . . . . 6 (∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1413bicomi 224 . . . . 5 (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
1514a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
1615abbidv 2795 . . 3 (𝐴 ∈ (ℤ‘2) → {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))})
175, 16eqtr4id 2783 . 2 (𝐴 ∈ (ℤ‘2) → ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
18 fveq2 6822 . . . . . . . 8 (𝑏 = 𝑐 → (1st𝑏) = (1st𝑐))
19 fveq2 6822 . . . . . . . . 9 (𝑏 = 𝑐 → (2nd𝑏) = (2nd𝑐))
2019oveq2d 7365 . . . . . . . 8 (𝑏 = 𝑐 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑐)))
2118, 20oveq12d 7367 . . . . . . 7 (𝑏 = 𝑐 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
22 ovex 7382 . . . . . . 7 ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) ∈ V
2321, 2, 22fvmpt 6930 . . . . . 6 (𝑐 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
2423ad2antrl 728 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
25 fveq2 6822 . . . . . . . 8 (𝑏 = 𝑑 → (1st𝑏) = (1st𝑑))
26 fveq2 6822 . . . . . . . . 9 (𝑏 = 𝑑 → (2nd𝑏) = (2nd𝑑))
2726oveq2d 7365 . . . . . . . 8 (𝑏 = 𝑑 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))
2825, 27oveq12d 7367 . . . . . . 7 (𝑏 = 𝑑 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
29 ovex 7382 . . . . . . 7 ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ∈ V
3028, 2, 29fvmpt 6930 . . . . . 6 (𝑑 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3130ad2antll 729 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3224, 31eqeq12d 2745 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) ↔ ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))))
33 rmspecsqrtnq 42899 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3433adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
35 nn0ssq 12858 . . . . . . . 8 0 ⊆ ℚ
36 xp1st 7956 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (1st𝑐) ∈ ℕ0)
3736ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℕ0)
3835, 37sselid 3933 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℚ)
39 xp2nd 7957 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (2nd𝑐) ∈ ℤ)
4039ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℤ)
41 zq 12855 . . . . . . . 8 ((2nd𝑐) ∈ ℤ → (2nd𝑐) ∈ ℚ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℚ)
43 xp1st 7956 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (1st𝑑) ∈ ℕ0)
4443ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℕ0)
4535, 44sselid 3933 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℚ)
46 xp2nd 7957 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (2nd𝑑) ∈ ℤ)
4746ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℤ)
48 zq 12855 . . . . . . . 8 ((2nd𝑑) ∈ ℤ → (2nd𝑑) ∈ ℚ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℚ)
50 qirropth 42901 . . . . . . 7 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((1st𝑐) ∈ ℚ ∧ (2nd𝑐) ∈ ℚ) ∧ ((1st𝑑) ∈ ℚ ∧ (2nd𝑑) ∈ ℚ)) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5134, 38, 42, 45, 49, 50syl122anc 1381 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5251biimpd 229 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
53 xpopth 7965 . . . . . 6 ((𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ)) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5453adantl 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5552, 54sylibd 239 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → 𝑐 = 𝑑))
5632, 55sylbid 240 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
5756ralrimivva 3172 . 2 (𝐴 ∈ (ℤ‘2) → ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
58 dff1o6 7212 . 2 ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ↔ ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ) ∧ ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ∧ ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑)))
594, 17, 57, 58syl3anbrc 1344 1 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cdif 3900  cop 4583  cmpt 5173   × cxp 5617  ran crn 5620   Fn wfn 6477  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  2c2 12183  0cn0 12384  cz 12471  cuz 12735  cq 12849  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647
This theorem is referenced by:  rmxyelxp  42905  rmxyval  42908
  Copyright terms: Public domain W3C validator