Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Structured version   Visualization version   GIF version

Theorem rmxypairf1o 40649
Description: The function used to extract rational and irrational parts in df-rmx 40640 and df-rmy 40641 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Distinct variable group:   𝑏,𝑐,𝑑,𝑎,𝐴

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 7288 . . . 4 ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ∈ V
2 eqid 2738 . . . 4 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
31, 2fnmpti 6560 . . 3 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ)
43a1i 11 . 2 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ))
52rnmpt 5853 . . 3 ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))}
6 vex 3426 . . . . . . . . . 10 𝑐 ∈ V
7 vex 3426 . . . . . . . . . 10 𝑑 ∈ V
86, 7op1std 7814 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → (1st𝑏) = 𝑐)
96, 7op2ndd 7815 . . . . . . . . . 10 (𝑏 = ⟨𝑐, 𝑑⟩ → (2nd𝑏) = 𝑑)
109oveq2d 7271 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · 𝑑))
118, 10oveq12d 7273 . . . . . . . 8 (𝑏 = ⟨𝑐, 𝑑⟩ → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1211eqeq2d 2749 . . . . . . 7 (𝑏 = ⟨𝑐, 𝑑⟩ → (𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))))
1312rexxp 5740 . . . . . 6 (∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1413bicomi 223 . . . . 5 (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
1514a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
1615abbidv 2808 . . 3 (𝐴 ∈ (ℤ‘2) → {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))})
175, 16eqtr4id 2798 . 2 (𝐴 ∈ (ℤ‘2) → ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
18 fveq2 6756 . . . . . . . 8 (𝑏 = 𝑐 → (1st𝑏) = (1st𝑐))
19 fveq2 6756 . . . . . . . . 9 (𝑏 = 𝑐 → (2nd𝑏) = (2nd𝑐))
2019oveq2d 7271 . . . . . . . 8 (𝑏 = 𝑐 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑐)))
2118, 20oveq12d 7273 . . . . . . 7 (𝑏 = 𝑐 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
22 ovex 7288 . . . . . . 7 ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) ∈ V
2321, 2, 22fvmpt 6857 . . . . . 6 (𝑐 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
2423ad2antrl 724 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
25 fveq2 6756 . . . . . . . 8 (𝑏 = 𝑑 → (1st𝑏) = (1st𝑑))
26 fveq2 6756 . . . . . . . . 9 (𝑏 = 𝑑 → (2nd𝑏) = (2nd𝑑))
2726oveq2d 7271 . . . . . . . 8 (𝑏 = 𝑑 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))
2825, 27oveq12d 7273 . . . . . . 7 (𝑏 = 𝑑 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
29 ovex 7288 . . . . . . 7 ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ∈ V
3028, 2, 29fvmpt 6857 . . . . . 6 (𝑑 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3130ad2antll 725 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3224, 31eqeq12d 2754 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) ↔ ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))))
33 rmspecsqrtnq 40644 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3433adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
35 nn0ssq 12626 . . . . . . . 8 0 ⊆ ℚ
36 xp1st 7836 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (1st𝑐) ∈ ℕ0)
3736ad2antrl 724 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℕ0)
3835, 37sselid 3915 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℚ)
39 xp2nd 7837 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (2nd𝑐) ∈ ℤ)
4039ad2antrl 724 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℤ)
41 zq 12623 . . . . . . . 8 ((2nd𝑐) ∈ ℤ → (2nd𝑐) ∈ ℚ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℚ)
43 xp1st 7836 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (1st𝑑) ∈ ℕ0)
4443ad2antll 725 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℕ0)
4535, 44sselid 3915 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℚ)
46 xp2nd 7837 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (2nd𝑑) ∈ ℤ)
4746ad2antll 725 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℤ)
48 zq 12623 . . . . . . . 8 ((2nd𝑑) ∈ ℤ → (2nd𝑑) ∈ ℚ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℚ)
50 qirropth 40646 . . . . . . 7 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((1st𝑐) ∈ ℚ ∧ (2nd𝑐) ∈ ℚ) ∧ ((1st𝑑) ∈ ℚ ∧ (2nd𝑑) ∈ ℚ)) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5134, 38, 42, 45, 49, 50syl122anc 1377 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5251biimpd 228 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
53 xpopth 7845 . . . . . 6 ((𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ)) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5453adantl 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5552, 54sylibd 238 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → 𝑐 = 𝑑))
5632, 55sylbid 239 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
5756ralrimivva 3114 . 2 (𝐴 ∈ (ℤ‘2) → ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
58 dff1o6 7128 . 2 ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ↔ ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ) ∧ ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ∧ ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑)))
594, 17, 57, 58syl3anbrc 1341 1 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cdif 3880  cop 4564  cmpt 5153   × cxp 5578  ran crn 5581   Fn wfn 6413  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cc 10800  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  2c2 11958  0cn0 12163  cz 12249  cuz 12511  cq 12617  cexp 13710  csqrt 14872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368
This theorem is referenced by:  rmxyelxp  40650  rmxyval  40653
  Copyright terms: Public domain W3C validator