Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Structured version   Visualization version   GIF version

Theorem rmxypairf1o 43003
Description: The function used to extract rational and irrational parts in df-rmx 42994 and df-rmy 42995 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Distinct variable group:   𝑏,𝑐,𝑑,𝑎,𝐴

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 7379 . . . 4 ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ∈ V
2 eqid 2731 . . . 4 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
31, 2fnmpti 6624 . . 3 (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ)
43a1i 11 . 2 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ))
52rnmpt 5896 . . 3 ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))}
6 vex 3440 . . . . . . . . . 10 𝑐 ∈ V
7 vex 3440 . . . . . . . . . 10 𝑑 ∈ V
86, 7op1std 7931 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → (1st𝑏) = 𝑐)
96, 7op2ndd 7932 . . . . . . . . . 10 (𝑏 = ⟨𝑐, 𝑑⟩ → (2nd𝑏) = 𝑑)
109oveq2d 7362 . . . . . . . . 9 (𝑏 = ⟨𝑐, 𝑑⟩ → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · 𝑑))
118, 10oveq12d 7364 . . . . . . . 8 (𝑏 = ⟨𝑐, 𝑑⟩ → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1211eqeq2d 2742 . . . . . . 7 (𝑏 = ⟨𝑐, 𝑑⟩ → (𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))))
1312rexxp 5781 . . . . . 6 (∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) ↔ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
1413bicomi 224 . . . . 5 (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))
1514a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ↔ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))))
1615abbidv 2797 . . 3 (𝐴 ∈ (ℤ‘2) → {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} = {𝑎 ∣ ∃𝑏 ∈ (ℕ0 × ℤ)𝑎 = ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))})
175, 16eqtr4id 2785 . 2 (𝐴 ∈ (ℤ‘2) → ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
18 fveq2 6822 . . . . . . . 8 (𝑏 = 𝑐 → (1st𝑏) = (1st𝑐))
19 fveq2 6822 . . . . . . . . 9 (𝑏 = 𝑐 → (2nd𝑏) = (2nd𝑐))
2019oveq2d 7362 . . . . . . . 8 (𝑏 = 𝑐 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑐)))
2118, 20oveq12d 7364 . . . . . . 7 (𝑏 = 𝑐 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
22 ovex 7379 . . . . . . 7 ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) ∈ V
2321, 2, 22fvmpt 6929 . . . . . 6 (𝑐 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
2423ad2antrl 728 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))))
25 fveq2 6822 . . . . . . . 8 (𝑏 = 𝑑 → (1st𝑏) = (1st𝑑))
26 fveq2 6822 . . . . . . . . 9 (𝑏 = 𝑑 → (2nd𝑏) = (2nd𝑑))
2726oveq2d 7362 . . . . . . . 8 (𝑏 = 𝑑 → ((√‘((𝐴↑2) − 1)) · (2nd𝑏)) = ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))
2825, 27oveq12d 7364 . . . . . . 7 (𝑏 = 𝑑 → ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
29 ovex 7379 . . . . . . 7 ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ∈ V
3028, 2, 29fvmpt 6929 . . . . . 6 (𝑑 ∈ (ℕ0 × ℤ) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3130ad2antll 729 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))))
3224, 31eqeq12d 2747 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) ↔ ((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑)))))
33 rmspecsqrtnq 42998 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
3433adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
35 nn0ssq 12855 . . . . . . . 8 0 ⊆ ℚ
36 xp1st 7953 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (1st𝑐) ∈ ℕ0)
3736ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℕ0)
3835, 37sselid 3927 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑐) ∈ ℚ)
39 xp2nd 7954 . . . . . . . . 9 (𝑐 ∈ (ℕ0 × ℤ) → (2nd𝑐) ∈ ℤ)
4039ad2antrl 728 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℤ)
41 zq 12852 . . . . . . . 8 ((2nd𝑐) ∈ ℤ → (2nd𝑐) ∈ ℚ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑐) ∈ ℚ)
43 xp1st 7953 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (1st𝑑) ∈ ℕ0)
4443ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℕ0)
4535, 44sselid 3927 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (1st𝑑) ∈ ℚ)
46 xp2nd 7954 . . . . . . . . 9 (𝑑 ∈ (ℕ0 × ℤ) → (2nd𝑑) ∈ ℤ)
4746ad2antll 729 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℤ)
48 zq 12852 . . . . . . . 8 ((2nd𝑑) ∈ ℤ → (2nd𝑑) ∈ ℚ)
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (2nd𝑑) ∈ ℚ)
50 qirropth 43000 . . . . . . 7 (((√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ) ∧ ((1st𝑐) ∈ ℚ ∧ (2nd𝑐) ∈ ℚ) ∧ ((1st𝑑) ∈ ℚ ∧ (2nd𝑑) ∈ ℚ)) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5134, 38, 42, 45, 49, 50syl122anc 1381 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) ↔ ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
5251biimpd 229 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → ((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑))))
53 xpopth 7962 . . . . . 6 ((𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ)) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5453adantl 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) = (1st𝑑) ∧ (2nd𝑐) = (2nd𝑑)) ↔ 𝑐 = 𝑑))
5552, 54sylibd 239 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((1st𝑐) + ((√‘((𝐴↑2) − 1)) · (2nd𝑐))) = ((1st𝑑) + ((√‘((𝐴↑2) − 1)) · (2nd𝑑))) → 𝑐 = 𝑑))
5632, 55sylbid 240 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑐 ∈ (ℕ0 × ℤ) ∧ 𝑑 ∈ (ℕ0 × ℤ))) → (((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
5756ralrimivva 3175 . 2 (𝐴 ∈ (ℤ‘2) → ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑))
58 dff1o6 7209 . 2 ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ↔ ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) Fn (ℕ0 × ℤ) ∧ ran (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))) = {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))} ∧ ∀𝑐 ∈ (ℕ0 × ℤ)∀𝑑 ∈ (ℕ0 × ℤ)(((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑐) = ((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏))))‘𝑑) → 𝑐 = 𝑑)))
594, 17, 57, 58syl3anbrc 1344 1 (𝐴 ∈ (ℤ‘2) → (𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝐴↑2) − 1)) · (2nd𝑏)))):(ℕ0 × ℤ)–1-1-onto→{𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  cdif 3894  cop 4579  cmpt 5170   × cxp 5612  ran crn 5615   Fn wfn 6476  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  2c2 12180  0cn0 12381  cz 12468  cuz 12732  cq 12846  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647
This theorem is referenced by:  rmxyelxp  43004  rmxyval  43007
  Copyright terms: Public domain W3C validator