NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  si3ex GIF version

Theorem si3ex 5807
Description: SI3 preserves sethood. (Contributed by SF, 12-Feb-2015.)
Hypothesis
Ref Expression
si3ex.1 A V
Assertion
Ref Expression
si3ex SI3 A V

Proof of Theorem si3ex
StepHypRef Expression
1 df-si3 5759 . 2 SI3 A = (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1A)
2 1stex 4740 . . . . 5 1st V
32siex 4754 . . . 4 SI 1st V
4 2ndex 5113 . . . . . . 7 2nd V
52, 4coex 4751 . . . . . 6 (1st 2nd ) V
65siex 4754 . . . . 5 SI (1st 2nd ) V
74, 4coex 4751 . . . . . 6 (2nd 2nd ) V
87siex 4754 . . . . 5 SI (2nd 2nd ) V
96, 8txpex 5786 . . . 4 ( SI (1st 2nd ) ⊗ SI (2nd 2nd )) V
103, 9txpex 5786 . . 3 ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) V
11 si3ex.1 . . . 4 A V
1211pw1ex 4304 . . 3 1A V
1310, 12imaex 4748 . 2 (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1A) V
141, 13eqeltri 2423 1 SI3 A V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  1cpw1 4136  1st c1st 4718   SI csi 4721   ccom 4722  cima 4723  2nd c2nd 4784  ctxp 5736   SI3 csi3 5758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-co 4727  df-ima 4728  df-si 4729  df-cnv 4786  df-2nd 4798  df-txp 5737  df-si3 5759
This theorem is referenced by:  composeex  5821  addcfnex  5825  funsex  5829  crossex  5851  domfnex  5871  ranfnex  5872  transex  5911  antisymex  5913  connexex  5914  foundex  5915  extex  5916  symex  5917  mucex  6134  ovcelem1  6172  ceex  6175
  Copyright terms: Public domain W3C validator