New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > finds | GIF version |
Description: Principle of finite induction over the finite cardinals, using implicit substitutions. The first hypothesis ensures stratification of φ, the next four set up the substitutions, and the last two set up the base case and induction hypothesis. Compare Theorem X.1.13 of [Rosser] p. 277. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
finds.1 | ⊢ {x ∣ φ} ∈ V |
finds.2 | ⊢ (x = 0c → (φ ↔ ψ)) |
finds.3 | ⊢ (x = y → (φ ↔ χ)) |
finds.4 | ⊢ (x = (y +c 1c) → (φ ↔ θ)) |
finds.5 | ⊢ (x = A → (φ ↔ τ)) |
finds.6 | ⊢ ψ |
finds.7 | ⊢ (y ∈ Nn → (χ → θ)) |
Ref | Expression |
---|---|
finds | ⊢ (A ∈ Nn → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1321 | . 2 ⊢ ⊤ | |
2 | finds.1 | . . . 4 ⊢ {x ∣ φ} ∈ V | |
3 | 2 | a1i 10 | . . 3 ⊢ ( ⊤ → {x ∣ φ} ∈ V) |
4 | finds.2 | . . 3 ⊢ (x = 0c → (φ ↔ ψ)) | |
5 | finds.3 | . . 3 ⊢ (x = y → (φ ↔ χ)) | |
6 | finds.4 | . . 3 ⊢ (x = (y +c 1c) → (φ ↔ θ)) | |
7 | finds.5 | . . 3 ⊢ (x = A → (φ ↔ τ)) | |
8 | finds.6 | . . . 4 ⊢ ψ | |
9 | 8 | a1i 10 | . . 3 ⊢ ( ⊤ → ψ) |
10 | finds.7 | . . . 4 ⊢ (y ∈ Nn → (χ → θ)) | |
11 | 10 | adantr 451 | . . 3 ⊢ ((y ∈ Nn ∧ ⊤ ) → (χ → θ)) |
12 | 3, 4, 5, 6, 7, 9, 11 | findsd 4411 | . 2 ⊢ ((A ∈ Nn ∧ ⊤ ) → τ) |
13 | 1, 12 | mpan2 652 | 1 ⊢ (A ∈ Nn → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ⊤ wtru 1316 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-0c 4378 df-addc 4379 df-nnc 4380 |
This theorem is referenced by: nnc0suc 4413 nncaddccl 4420 nnsucelr 4429 nndisjeq 4430 ltfintri 4467 ssfin 4471 ncfinraise 4482 ncfinlower 4484 evenoddnnnul 4515 evenodddisj 4517 nnadjoin 4521 nnpweq 4524 sfintfin 4533 tfinnn 4535 nulnnn 4557 nnnc 6147 ce0nn 6181 leconnnc 6219 nclenn 6250 nnltp1c 6263 nmembers1 6272 nncdiv3 6278 nnc3n3p1 6279 nchoicelem12 6301 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |