ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1m1e0 GIF version

Theorem 1m1e0 9175
Description: (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1m1e0 (1 − 1) = 0

Proof of Theorem 1m1e0
StepHypRef Expression
1 ax-1cn 8088 . 2 1 ∈ ℂ
21subidi 8413 1 (1 − 1) = 0
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  0cc0 7995  1c1 7996  cmin 8313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315
This theorem is referenced by:  nnm1nn0  9406  fseq1p1m1  10286  elfzp1b  10289  elfzm1b  10290  fldiv4lem1div2  10522  frecfzennn  10643  xnn0nnen  10654  zfz1isolemsplit  11055  lsw1  11116  resqrexlemcalc3  11522  arisum  12004  geo2sum  12020  cvgratnnlemnexp  12030  nn0o  12413  exprmfct  12655  phiprmpw  12739  phiprm  12740  odzdvds  12763  prmpwdvds  12873  dvexp  15379  dvply1  15433  1sgmprm  15662  lgslem4  15676  lgsne0  15711  lgsquad2lem2  15755  2lgsoddprmlem3a  15780  iswomni0  16378
  Copyright terms: Public domain W3C validator