Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1m1e0 | GIF version |
Description: (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
1m1e0 | ⊢ (1 − 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7808 | . 2 ⊢ 1 ∈ ℂ | |
2 | 1 | subidi 8129 | 1 ⊢ (1 − 1) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5818 0cc0 7715 1c1 7716 − cmin 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 |
This theorem is referenced by: nnm1nn0 9114 fseq1p1m1 9978 elfzp1b 9981 elfzm1b 9982 frecfzennn 10307 zfz1isolemsplit 10691 resqrexlemcalc3 10898 arisum 11377 geo2sum 11393 cvgratnnlemnexp 11403 nn0o 11779 exprmfct 11994 phiprmpw 12074 phiprm 12075 dvexp 13035 iswomni0 13584 |
Copyright terms: Public domain | W3C validator |