| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1m1e0 | GIF version | ||
| Description: (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1m1e0 | ⊢ (1 − 1) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8033 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | subidi 8358 | 1 ⊢ (1 − 1) = 0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5956 0cc0 7940 1c1 7941 − cmin 8258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-sub 8260 |
| This theorem is referenced by: nnm1nn0 9351 fseq1p1m1 10231 elfzp1b 10234 elfzm1b 10235 fldiv4lem1div2 10467 frecfzennn 10588 xnn0nnen 10599 zfz1isolemsplit 11000 lsw1 11060 resqrexlemcalc3 11397 arisum 11879 geo2sum 11895 cvgratnnlemnexp 11905 nn0o 12288 exprmfct 12530 phiprmpw 12614 phiprm 12615 odzdvds 12638 prmpwdvds 12748 dvexp 15253 dvply1 15307 1sgmprm 15536 lgslem4 15550 lgsne0 15585 lgsquad2lem2 15629 2lgsoddprmlem3a 15654 iswomni0 16125 |
| Copyright terms: Public domain | W3C validator |