ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phiprm Unicode version

Theorem phiprm 12630
Description: Value of the Euler  phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
phiprm  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )

Proof of Theorem phiprm
StepHypRef Expression
1 1nn 9077 . . 3  |-  1  e.  NN
2 phiprmpw 12629 . . 3  |-  ( ( P  e.  Prime  /\  1  e.  NN )  ->  ( phi `  ( P ^
1 ) )  =  ( ( P ^
( 1  -  1 ) )  x.  ( P  -  1 ) ) )
31, 2mpan2 425 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( ( P ^ (
1  -  1 ) )  x.  ( P  -  1 ) ) )
4 prmz 12518 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
54zcnd 9526 . . . 4  |-  ( P  e.  Prime  ->  P  e.  CC )
65exp1d 10845 . . 3  |-  ( P  e.  Prime  ->  ( P ^ 1 )  =  P )
76fveq2d 5598 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( phi `  P ) )
8 1m1e0 9135 . . . . . 6  |-  ( 1  -  1 )  =  0
98oveq2i 5973 . . . . 5  |-  ( P ^ ( 1  -  1 ) )  =  ( P ^ 0 )
105exp0d 10844 . . . . 5  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
119, 10eqtrid 2251 . . . 4  |-  ( P  e.  Prime  ->  ( P ^ ( 1  -  1 ) )  =  1 )
1211oveq1d 5977 . . 3  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( 1  x.  ( P  -  1 ) ) )
13 ax-1cn 8048 . . . . 5  |-  1  e.  CC
14 subcl 8301 . . . . 5  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  -  1 )  e.  CC )
155, 13, 14sylancl 413 . . . 4  |-  ( P  e.  Prime  ->  ( P  -  1 )  e.  CC )
1615mulid2d 8121 . . 3  |-  ( P  e.  Prime  ->  ( 1  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
1712, 16eqtrd 2239 . 2  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
183, 7, 173eqtr3d 2247 1  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   ` cfv 5285  (class class class)co 5962   CCcc 7953   0cc0 7955   1c1 7956    x. cmul 7960    - cmin 8273   NNcn 9066   ^cexp 10715   Primecprime 12514   phicphi 12616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-2o 6521  df-oadd 6524  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-sup 7107  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-ihash 10953  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360  df-prm 12515  df-phi 12618
This theorem is referenced by:  fermltl  12641  prmdiv  12642  vfermltl  12659  pockthlem  12764  lgslem1  15562
  Copyright terms: Public domain W3C validator