| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprsym | GIF version | ||
| Description: The apartness relation given by df-apr 14253 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprirr.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| aprirr.ap | ⊢ (𝜑 → # = (#r‘𝑅)) |
| aprirr.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| aprirr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| aprsym.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| aprsym | ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aprirr.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | aprirr.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 3 | aprirr.ap | . . . . . . 7 ⊢ (𝜑 → # = (#r‘𝑅)) | |
| 4 | eqidd 2230 | . . . . . . 7 ⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | |
| 5 | eqidd 2230 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
| 6 | aprirr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | aprsym.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 2, 3, 4, 5, 1, 6, 7 | aprval 14254 | . . . . . 6 ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
| 10 | eqid 2229 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 11 | eqid 2229 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 12 | 10, 11 | unitnegcl 14102 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
| 13 | 1, 9, 12 | syl2an2r 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
| 14 | 1 | ringgrpd 13976 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 15 | 6, 2 | eleqtrd 2308 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 16 | 7, 2 | eleqtrd 2308 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
| 17 | eqid 2229 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 18 | eqid 2229 | . . . . . . . 8 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 19 | 17, 18, 11 | grpinvsub 13623 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
| 20 | 14, 15, 16, 19 | syl3anc 1271 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
| 21 | 20 | eleq1d 2298 | . . . . 5 ⊢ (𝜑 → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 23 | 13, 22 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅)) |
| 24 | 2, 3, 4, 5, 1, 7, 6 | aprval 14254 | . . . 4 ⊢ (𝜑 → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑌 # 𝑋) |
| 27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 Grpcgrp 13541 invgcminusg 13542 -gcsg 13543 Ringcrg 13967 Unitcui 14058 #rcapr 14252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-sbg 13546 df-cmn 13831 df-abl 13832 df-mgp 13892 df-ur 13931 df-srg 13935 df-ring 13969 df-oppr 14039 df-dvdsr 14060 df-unit 14061 df-apr 14253 |
| This theorem is referenced by: aprcotr 14257 aprap 14258 |
| Copyright terms: Public domain | W3C validator |