![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > aprsym | GIF version |
Description: The apartness relation given by df-apr 13813 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.) |
Ref | Expression |
---|---|
aprirr.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
aprirr.ap | ⊢ (𝜑 → # = (#r‘𝑅)) |
aprirr.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
aprirr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
aprsym.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
aprsym | ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aprirr.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | aprirr.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
3 | aprirr.ap | . . . . . . 7 ⊢ (𝜑 → # = (#r‘𝑅)) | |
4 | eqidd 2197 | . . . . . . 7 ⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | |
5 | eqidd 2197 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
6 | aprirr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | aprsym.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 2, 3, 4, 5, 1, 6, 7 | aprval 13814 | . . . . . 6 ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
10 | eqid 2196 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
11 | eqid 2196 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
12 | 10, 11 | unitnegcl 13662 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
13 | 1, 9, 12 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
14 | 1 | ringgrpd 13537 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
15 | 6, 2 | eleqtrd 2275 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
16 | 7, 2 | eleqtrd 2275 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
17 | eqid 2196 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2196 | . . . . . . . 8 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
19 | 17, 18, 11 | grpinvsub 13190 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
20 | 14, 15, 16, 19 | syl3anc 1249 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
21 | 20 | eleq1d 2265 | . . . . 5 ⊢ (𝜑 → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
23 | 13, 22 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅)) |
24 | 2, 3, 4, 5, 1, 7, 6 | aprval 13814 | . . . 4 ⊢ (𝜑 → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑌 # 𝑋) |
27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 Grpcgrp 13108 invgcminusg 13109 -gcsg 13110 Ringcrg 13528 Unitcui 13619 #rcapr 13812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-lttrn 7991 ax-pre-ltadd 7993 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-inn 8988 df-2 9046 df-3 9047 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-plusg 12744 df-mulr 12745 df-0g 12905 df-mgm 12975 df-sgrp 13021 df-mnd 13034 df-grp 13111 df-minusg 13112 df-sbg 13113 df-cmn 13392 df-abl 13393 df-mgp 13453 df-ur 13492 df-srg 13496 df-ring 13530 df-oppr 13600 df-dvdsr 13621 df-unit 13622 df-apr 13813 |
This theorem is referenced by: aprcotr 13817 aprap 13818 |
Copyright terms: Public domain | W3C validator |