![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > aprsym | GIF version |
Description: The apartness relation given by df-apr 13377 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.) |
Ref | Expression |
---|---|
aprirr.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
aprirr.ap | ⊢ (𝜑 → # = (#r‘𝑅)) |
aprirr.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
aprirr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
aprsym.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
aprsym | ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aprirr.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | aprirr.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
3 | aprirr.ap | . . . . . . 7 ⊢ (𝜑 → # = (#r‘𝑅)) | |
4 | eqidd 2178 | . . . . . . 7 ⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | |
5 | eqidd 2178 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
6 | aprirr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | aprsym.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 2, 3, 4, 5, 1, 6, 7 | aprval 13378 | . . . . . 6 ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
10 | eqid 2177 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
11 | eqid 2177 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
12 | 10, 11 | unitnegcl 13305 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
13 | 1, 9, 12 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
14 | 1 | ringgrpd 13194 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
15 | 6, 2 | eleqtrd 2256 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
16 | 7, 2 | eleqtrd 2256 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
17 | eqid 2177 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2177 | . . . . . . . 8 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
19 | 17, 18, 11 | grpinvsub 12958 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
20 | 14, 15, 16, 19 | syl3anc 1238 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
21 | 20 | eleq1d 2246 | . . . . 5 ⊢ (𝜑 → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
23 | 13, 22 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅)) |
24 | 2, 3, 4, 5, 1, 7, 6 | aprval 13378 | . . . 4 ⊢ (𝜑 → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑌 # 𝑋) |
27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 Grpcgrp 12883 invgcminusg 12884 -gcsg 12885 Ringcrg 13185 Unitcui 13262 #rcapr 13376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-tpos 6249 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-minusg 12887 df-sbg 12888 df-cmn 13096 df-abl 13097 df-mgp 13137 df-ur 13149 df-srg 13153 df-ring 13187 df-oppr 13246 df-dvdsr 13264 df-unit 13265 df-apr 13377 |
This theorem is referenced by: aprcotr 13381 aprap 13382 |
Copyright terms: Public domain | W3C validator |