| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aprsym | GIF version | ||
| Description: The apartness relation given by df-apr 14210 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| aprirr.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| aprirr.ap | ⊢ (𝜑 → # = (#r‘𝑅)) |
| aprirr.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| aprirr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| aprsym.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| aprsym | ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aprirr.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | aprirr.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 3 | aprirr.ap | . . . . . . 7 ⊢ (𝜑 → # = (#r‘𝑅)) | |
| 4 | eqidd 2210 | . . . . . . 7 ⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | |
| 5 | eqidd 2210 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
| 6 | aprirr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | aprsym.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 2, 3, 4, 5, 1, 6, 7 | aprval 14211 | . . . . . 6 ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
| 9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
| 10 | eqid 2209 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 11 | eqid 2209 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 12 | 10, 11 | unitnegcl 14059 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
| 13 | 1, 9, 12 | syl2an2r 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
| 14 | 1 | ringgrpd 13934 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 15 | 6, 2 | eleqtrd 2288 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 16 | 7, 2 | eleqtrd 2288 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
| 17 | eqid 2209 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 18 | eqid 2209 | . . . . . . . 8 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 19 | 17, 18, 11 | grpinvsub 13581 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
| 20 | 14, 15, 16, 19 | syl3anc 1252 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
| 21 | 20 | eleq1d 2278 | . . . . 5 ⊢ (𝜑 → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 23 | 13, 22 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅)) |
| 24 | 2, 3, 4, 5, 1, 7, 6 | aprval 14211 | . . . 4 ⊢ (𝜑 → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
| 26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑌 # 𝑋) |
| 27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 Grpcgrp 13499 invgcminusg 13500 -gcsg 13501 Ringcrg 13925 Unitcui 14016 #rcapr 14209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-cmn 13789 df-abl 13790 df-mgp 13850 df-ur 13889 df-srg 13893 df-ring 13927 df-oppr 13997 df-dvdsr 14018 df-unit 14019 df-apr 14210 |
| This theorem is referenced by: aprcotr 14214 aprap 14215 |
| Copyright terms: Public domain | W3C validator |