![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > aprsym | GIF version |
Description: The apartness relation given by df-apr 13777 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.) |
Ref | Expression |
---|---|
aprirr.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
aprirr.ap | ⊢ (𝜑 → # = (#r‘𝑅)) |
aprirr.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
aprirr.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
aprsym.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
aprsym | ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aprirr.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | aprirr.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
3 | aprirr.ap | . . . . . . 7 ⊢ (𝜑 → # = (#r‘𝑅)) | |
4 | eqidd 2194 | . . . . . . 7 ⊢ (𝜑 → (-g‘𝑅) = (-g‘𝑅)) | |
5 | eqidd 2194 | . . . . . . 7 ⊢ (𝜑 → (Unit‘𝑅) = (Unit‘𝑅)) | |
6 | aprirr.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | aprsym.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 2, 3, 4, 5, 1, 6, 7 | aprval 13778 | . . . . . 6 ⊢ (𝜑 → (𝑋 # 𝑌 ↔ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅))) |
9 | 8 | biimpa 296 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) |
10 | eqid 2193 | . . . . . 6 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
11 | eqid 2193 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
12 | 10, 11 | unitnegcl 13626 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋(-g‘𝑅)𝑌) ∈ (Unit‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
13 | 1, 9, 12 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅)) |
14 | 1 | ringgrpd 13501 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) |
15 | 6, 2 | eleqtrd 2272 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
16 | 7, 2 | eleqtrd 2272 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑅)) |
17 | eqid 2193 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2193 | . . . . . . . 8 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
19 | 17, 18, 11 | grpinvsub 13154 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
20 | 14, 15, 16, 19 | syl3anc 1249 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) = (𝑌(-g‘𝑅)𝑋)) |
21 | 20 | eleq1d 2262 | . . . . 5 ⊢ (𝜑 → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
22 | 21 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (((invg‘𝑅)‘(𝑋(-g‘𝑅)𝑌)) ∈ (Unit‘𝑅) ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
23 | 13, 22 | mpbid 147 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅)) |
24 | 2, 3, 4, 5, 1, 7, 6 | aprval 13778 | . . . 4 ⊢ (𝜑 → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → (𝑌 # 𝑋 ↔ (𝑌(-g‘𝑅)𝑋) ∈ (Unit‘𝑅))) |
26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑋 # 𝑌) → 𝑌 # 𝑋) |
27 | 26 | ex 115 | 1 ⊢ (𝜑 → (𝑋 # 𝑌 → 𝑌 # 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 Grpcgrp 13072 invgcminusg 13073 -gcsg 13074 Ringcrg 13492 Unitcui 13583 #rcapr 13776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-sbg 13077 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-apr 13777 |
This theorem is referenced by: aprcotr 13781 aprap 13782 |
Copyright terms: Public domain | W3C validator |