ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceiqm1l Unicode version

Theorem ceiqm1l 10342
Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
Assertion
Ref Expression
ceiqm1l  |-  ( A  e.  QQ  ->  ( -u ( |_ `  -u A
)  -  1 )  <  A )

Proof of Theorem ceiqm1l
StepHypRef Expression
1 qnegcl 9666 . . . . . 6  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
21flqcld 10308 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  -u A )  e.  ZZ )
32zcnd 9406 . . . 4  |-  ( A  e.  QQ  ->  ( |_ `  -u A )  e.  CC )
4 1cnd 8003 . . . 4  |-  ( A  e.  QQ  ->  1  e.  CC )
53, 4negdid 8311 . . 3  |-  ( A  e.  QQ  ->  -u (
( |_ `  -u A
)  +  1 )  =  ( -u ( |_ `  -u A )  + 
-u 1 ) )
63negcld 8285 . . . 4  |-  ( A  e.  QQ  ->  -u ( |_ `  -u A )  e.  CC )
76, 4negsubd 8304 . . 3  |-  ( A  e.  QQ  ->  ( -u ( |_ `  -u A
)  +  -u 1
)  =  ( -u ( |_ `  -u A
)  -  1 ) )
85, 7eqtr2d 2223 . 2  |-  ( A  e.  QQ  ->  ( -u ( |_ `  -u A
)  -  1 )  =  -u ( ( |_
`  -u A )  +  1 ) )
9 qre 9655 . . 3  |-  ( A  e.  QQ  ->  A  e.  RR )
102peano2zd 9408 . . . 4  |-  ( A  e.  QQ  ->  (
( |_ `  -u A
)  +  1 )  e.  ZZ )
1110zred 9405 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  -u A
)  +  1 )  e.  RR )
12 flqltp1 10310 . . . 4  |-  ( -u A  e.  QQ  ->  -u A  <  ( ( |_
`  -u A )  +  1 ) )
131, 12syl 14 . . 3  |-  ( A  e.  QQ  ->  -u A  <  ( ( |_ `  -u A )  +  1 ) )
149, 11, 13ltnegcon1d 8512 . 2  |-  ( A  e.  QQ  ->  -u (
( |_ `  -u A
)  +  1 )  <  A )
158, 14eqbrtrd 4040 1  |-  ( A  e.  QQ  ->  ( -u ( |_ `  -u A
)  -  1 )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5896   1c1 7842    + caddc 7844    < clt 8022    - cmin 8158   -ucneg 8159   QQcq 9649   |_cfl 10299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-q 9650  df-rp 9684  df-fl 10301
This theorem is referenced by:  ceilqm1lt  10343  ceiqle  10344
  Copyright terms: Public domain W3C validator