![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqcld | Unicode version |
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.) |
Ref | Expression |
---|---|
flqcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
flqcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | flqcl 10345 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-fl 10342 |
This theorem is referenced by: flqge 10354 flqlt 10355 flid 10356 flqltnz 10359 flqwordi 10360 flqword2 10361 flqaddz 10369 flhalf 10374 flltdivnn0lt 10376 fldiv4p1lem1div2 10377 fldiv4lem1div2uz2 10378 ceiqcl 10381 ceiqge 10383 ceiqm1l 10385 intfracq 10394 flqdiv 10395 modqval 10398 modqvalr 10399 modqcl 10400 flqpmodeq 10401 modq0 10403 modqge0 10406 modqlt 10407 modqdiffl 10409 modqdifz 10410 modqmulnn 10416 modqvalp1 10417 zmodcl 10418 modqcyc 10433 modqadd1 10435 modqmuladd 10440 modqmul1 10451 modqdi 10466 modqsubdir 10467 iexpcyc 10718 facavg 10820 dvdsmod 12007 divalglemnn 12062 divalgmod 12071 flodddiv4t2lthalf 12081 modgcd 12131 hashdvds 12362 prmdiv 12376 odzdvds 12386 fldivp1 12489 pcfac 12491 pcbc 12492 mulgmodid 13234 gausslemma2dlem3 15220 gausslemma2dlem4 15221 gausslemma2dlem5a 15222 gausslemma2dlem5 15223 gausslemma2dlem6 15224 lgseisenlem4 15230 lgseisen 15231 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1 15248 2lgslem2 15249 |
Copyright terms: Public domain | W3C validator |