ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqcld Unicode version

Theorem flqcld 10169
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
Hypothesis
Ref Expression
flqcld.1  |-  ( ph  ->  A  e.  QQ )
Assertion
Ref Expression
flqcld  |-  ( ph  ->  ( |_ `  A
)  e.  ZZ )

Proof of Theorem flqcld
StepHypRef Expression
1 flqcld.1 . 2  |-  ( ph  ->  A  e.  QQ )
2 flqcl 10165 . 2  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
31, 2syl 14 1  |-  ( ph  ->  ( |_ `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   ` cfv 5169   ZZcz 9161   QQcq 9521   |_cfl 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-n0 9085  df-z 9162  df-q 9522  df-rp 9554  df-fl 10162
This theorem is referenced by:  flqge  10174  flqlt  10175  flid  10176  flqltnz  10179  flqwordi  10180  flqword2  10181  flqaddz  10189  flhalf  10194  flltdivnn0lt  10196  fldiv4p1lem1div2  10197  ceiqcl  10199  ceiqge  10201  ceiqm1l  10203  intfracq  10212  flqdiv  10213  modqval  10216  modqvalr  10217  modqcl  10218  flqpmodeq  10219  modq0  10221  modqge0  10224  modqlt  10225  modqdiffl  10227  modqdifz  10228  modqmulnn  10234  modqvalp1  10235  zmodcl  10236  modqcyc  10251  modqadd1  10253  modqmuladd  10258  modqmul1  10269  modqdi  10284  modqsubdir  10285  iexpcyc  10516  facavg  10613  dvdsmod  11746  divalglemnn  11801  divalgmod  11810  flodddiv4t2lthalf  11820  modgcd  11866  hashdvds  12084  prmdiv  12098
  Copyright terms: Public domain W3C validator