| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceiqm1l | GIF version | ||
| Description: One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.) |
| Ref | Expression |
|---|---|
| ceiqm1l | ⊢ (𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnegcl 9757 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | |
| 2 | 1 | flqcld 10420 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘-𝐴) ∈ ℤ) |
| 3 | 2 | zcnd 9496 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘-𝐴) ∈ ℂ) |
| 4 | 1cnd 8088 | . . . 4 ⊢ (𝐴 ∈ ℚ → 1 ∈ ℂ) | |
| 5 | 3, 4 | negdid 8396 | . . 3 ⊢ (𝐴 ∈ ℚ → -((⌊‘-𝐴) + 1) = (-(⌊‘-𝐴) + -1)) |
| 6 | 3 | negcld 8370 | . . . 4 ⊢ (𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℂ) |
| 7 | 6, 4 | negsubd 8389 | . . 3 ⊢ (𝐴 ∈ ℚ → (-(⌊‘-𝐴) + -1) = (-(⌊‘-𝐴) − 1)) |
| 8 | 5, 7 | eqtr2d 2239 | . 2 ⊢ (𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) = -((⌊‘-𝐴) + 1)) |
| 9 | qre 9746 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 10 | 2 | peano2zd 9498 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((⌊‘-𝐴) + 1) ∈ ℤ) |
| 11 | 10 | zred 9495 | . . 3 ⊢ (𝐴 ∈ ℚ → ((⌊‘-𝐴) + 1) ∈ ℝ) |
| 12 | flqltp1 10422 | . . . 4 ⊢ (-𝐴 ∈ ℚ → -𝐴 < ((⌊‘-𝐴) + 1)) | |
| 13 | 1, 12 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℚ → -𝐴 < ((⌊‘-𝐴) + 1)) |
| 14 | 9, 11, 13 | ltnegcon1d 8598 | . 2 ⊢ (𝐴 ∈ ℚ → -((⌊‘-𝐴) + 1) < 𝐴) |
| 15 | 8, 14 | eqbrtrd 4066 | 1 ⊢ (𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 1c1 7926 + caddc 7928 < clt 8107 − cmin 8243 -cneg 8244 ℚcq 9740 ⌊cfl 10411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 |
| This theorem is referenced by: ceilqm1lt 10457 ceiqle 10458 |
| Copyright terms: Public domain | W3C validator |