ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrmul1 Unicode version

Theorem dvdsrmul1 14060
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsrmul1.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrmul1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )

Proof of Theorem dvdsrmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . 5  |-  B  =  ( Base `  R
)
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  B  =  ( Base `  R
) )
3 dvdsr.2 . . . . 5  |-  .||  =  (
||r `  R )
43a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  .||  =  (
||r `  R ) )
5 ringsrg 14005 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  R  e. SRing )
7 dvdsrmul1.3 . . . . 5  |-  .x.  =  ( .r `  R )
87a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  .x.  =  ( .r `  R ) )
92, 4, 6, 8dvdsrd 14052 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y ) ) )
101a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  B  =  ( Base `  R
) )
113a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  .||  =  (
||r `  R ) )
12 simplll 533 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e.  Ring )
1312, 5syl 14 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e. SRing )
147a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  .x.  =  ( .r `  R ) )
15 simplr 528 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  X  e.  B )
16 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  Z  e.  B )
171, 7ringcl 13971 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
1812, 15, 16, 17syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  e.  B )
19 simpr 110 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  x  e.  B )
2010, 11, 13, 14, 18, 19dvdsrmuld 14054 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( x  .x.  ( X 
.x.  Z ) ) )
211, 7ringass 13974 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  X  e.  B  /\  Z  e.  B )
)  ->  ( (
x  .x.  X )  .x.  Z )  =  ( x  .x.  ( X 
.x.  Z ) ) )
2212, 19, 15, 16, 21syl13anc 1273 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  .x.  Z )  =  ( x  .x.  ( X  .x.  Z ) ) )
2320, 22breqtrrd 4110 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( ( x  .x.  X )  .x.  Z
) )
24 oveq1 6007 . . . . . . 7  |-  ( ( x  .x.  X )  =  Y  ->  (
( x  .x.  X
)  .x.  Z )  =  ( Y  .x.  Z ) )
2524breq2d 4094 . . . . . 6  |-  ( ( x  .x.  X )  =  Y  ->  (
( X  .x.  Z
)  .||  ( ( x 
.x.  X )  .x.  Z )  <->  ( X  .x.  Z )  .||  ( Y 
.x.  Z ) ) )
2623, 25syl5ibcom 155 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  =  Y  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
2726rexlimdva 2648 . . . 4  |-  ( ( ( R  e.  Ring  /\  Z  e.  B )  /\  X  e.  B
)  ->  ( E. x  e.  B  (
x  .x.  X )  =  Y  ->  ( X 
.x.  Z )  .||  ( Y  .x.  Z ) ) )
2827expimpd 363 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  (
( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y )  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
299, 28sylbid 150 . 2  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) ) )
30293impia 1224 1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106  SRingcsrg 13921   Ringcrg 13954   ||rcdsr 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-dvdsr 14047
This theorem is referenced by:  unitmulcl  14071
  Copyright terms: Public domain W3C validator