ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrmul1 Unicode version

Theorem dvdsrmul1 13979
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsrmul1.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsrmul1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )

Proof of Theorem dvdsrmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . 5  |-  B  =  ( Base `  R
)
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  B  =  ( Base `  R
) )
3 dvdsr.2 . . . . 5  |-  .||  =  (
||r `  R )
43a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  .||  =  (
||r `  R ) )
5 ringsrg 13924 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  R  e. SRing )
7 dvdsrmul1.3 . . . . 5  |-  .x.  =  ( .r `  R )
87a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  .x.  =  ( .r `  R ) )
92, 4, 6, 8dvdsrd 13971 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  <->  ( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y ) ) )
101a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  B  =  ( Base `  R
) )
113a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  .||  =  (
||r `  R ) )
12 simplll 533 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e.  Ring )
1312, 5syl 14 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  R  e. SRing )
147a1i 9 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  .x.  =  ( .r `  R ) )
15 simplr 528 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  X  e.  B )
16 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  Z  e.  B )
171, 7ringcl 13890 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
1812, 15, 16, 17syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  e.  B )
19 simpr 110 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  x  e.  B )
2010, 11, 13, 14, 18, 19dvdsrmuld 13973 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( x  .x.  ( X 
.x.  Z ) ) )
211, 7ringass 13893 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  X  e.  B  /\  Z  e.  B )
)  ->  ( (
x  .x.  X )  .x.  Z )  =  ( x  .x.  ( X 
.x.  Z ) ) )
2212, 19, 15, 16, 21syl13anc 1252 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  .x.  Z )  =  ( x  .x.  ( X  .x.  Z ) ) )
2320, 22breqtrrd 4087 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  ( X  .x.  Z )  .||  ( ( x  .x.  X )  .x.  Z
) )
24 oveq1 5974 . . . . . . 7  |-  ( ( x  .x.  X )  =  Y  ->  (
( x  .x.  X
)  .x.  Z )  =  ( Y  .x.  Z ) )
2524breq2d 4071 . . . . . 6  |-  ( ( x  .x.  X )  =  Y  ->  (
( X  .x.  Z
)  .||  ( ( x 
.x.  X )  .x.  Z )  <->  ( X  .x.  Z )  .||  ( Y 
.x.  Z ) ) )
2623, 25syl5ibcom 155 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  Z  e.  B
)  /\  X  e.  B )  /\  x  e.  B )  ->  (
( x  .x.  X
)  =  Y  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
2726rexlimdva 2625 . . . 4  |-  ( ( ( R  e.  Ring  /\  Z  e.  B )  /\  X  e.  B
)  ->  ( E. x  e.  B  (
x  .x.  X )  =  Y  ->  ( X 
.x.  Z )  .||  ( Y  .x.  Z ) ) )
2827expimpd 363 . . 3  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  (
( X  e.  B  /\  E. x  e.  B  ( x  .x.  X )  =  Y )  -> 
( X  .x.  Z
)  .||  ( Y  .x.  Z ) ) )
299, 28sylbid 150 . 2  |-  ( ( R  e.  Ring  /\  Z  e.  B )  ->  ( X  .||  Y  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) ) )
30293impia 1203 1  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  .||  Y )  ->  ( X  .x.  Z )  .||  ( Y  .x.  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025  SRingcsrg 13840   Ringcrg 13873   ||rcdsr 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-dvdsr 13966
This theorem is referenced by:  unitmulcl  13990
  Copyright terms: Public domain W3C validator