| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrmul1 | GIF version | ||
| Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrmul1.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsrmul1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 3 | dvdsr.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ∥ = (∥r‘𝑅)) |
| 5 | ringsrg 13859 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 7 | dvdsrmul1.3 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → · = (.r‘𝑅)) |
| 9 | 2, 4, 6, 8 | dvdsrd 13906 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌))) |
| 10 | 1 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 11 | 3 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ∥ = (∥r‘𝑅)) |
| 12 | simplll 533 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | 12, 5 | syl 14 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 14 | 7 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → · = (.r‘𝑅)) |
| 15 | simplr 528 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 16 | simpllr 534 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
| 17 | 1, 7 | ringcl 13825 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 18 | 12, 15, 16, 17 | syl3anc 1250 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 19 | simpr 110 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 20 | 10, 11, 13, 14, 18, 19 | dvdsrmuld 13908 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ (𝑥 · (𝑋 · 𝑍))) |
| 21 | 1, 7 | ringass 13828 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 22 | 12, 19, 15, 16, 21 | syl13anc 1252 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 23 | 20, 22 | breqtrrd 4076 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍)) |
| 24 | oveq1 5961 | . . . . . . 7 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑥 · 𝑋) · 𝑍) = (𝑌 · 𝑍)) | |
| 25 | 24 | breq2d 4060 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍) ↔ (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 26 | 23, 25 | syl5ibcom 155 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 27 | 26 | rexlimdva 2624 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 28 | 27 | expimpd 363 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 29 | 9, 28 | sylbid 150 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 30 | 29 | 3impia 1203 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 .rcmulr 12960 SRingcsrg 13775 Ringcrg 13808 ∥rcdsr 13898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-cmn 13672 df-abl 13673 df-mgp 13733 df-ur 13772 df-srg 13776 df-ring 13810 df-dvdsr 13901 |
| This theorem is referenced by: unitmulcl 13925 |
| Copyright terms: Public domain | W3C validator |