| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsrmul1 | GIF version | ||
| Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrmul1.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsrmul1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 3 | dvdsr.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ∥ = (∥r‘𝑅)) |
| 5 | ringsrg 13996 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 7 | dvdsrmul1.3 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → · = (.r‘𝑅)) |
| 9 | 2, 4, 6, 8 | dvdsrd 14043 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌))) |
| 10 | 1 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 11 | 3 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ∥ = (∥r‘𝑅)) |
| 12 | simplll 533 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | 12, 5 | syl 14 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ SRing) |
| 14 | 7 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → · = (.r‘𝑅)) |
| 15 | simplr 528 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 16 | simpllr 534 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
| 17 | 1, 7 | ringcl 13962 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 18 | 12, 15, 16, 17 | syl3anc 1271 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 19 | simpr 110 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 20 | 10, 11, 13, 14, 18, 19 | dvdsrmuld 14045 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ (𝑥 · (𝑋 · 𝑍))) |
| 21 | 1, 7 | ringass 13965 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 22 | 12, 19, 15, 16, 21 | syl13anc 1273 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) |
| 23 | 20, 22 | breqtrrd 4110 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍)) |
| 24 | oveq1 6001 | . . . . . . 7 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑥 · 𝑋) · 𝑍) = (𝑌 · 𝑍)) | |
| 25 | 24 | breq2d 4094 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍) ↔ (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 26 | 23, 25 | syl5ibcom 155 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 27 | 26 | rexlimdva 2648 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 28 | 27 | expimpd 363 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 29 | 9, 28 | sylbid 150 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) |
| 30 | 29 | 3impia 1224 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 .rcmulr 13097 SRingcsrg 13912 Ringcrg 13945 ∥rcdsr 14035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-cmn 13809 df-abl 13810 df-mgp 13870 df-ur 13909 df-srg 13913 df-ring 13947 df-dvdsr 14038 |
| This theorem is referenced by: unitmulcl 14062 |
| Copyright terms: Public domain | W3C validator |