| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvdsrmul1 | GIF version | ||
| Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) | 
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) | 
| dvdsrmul1.3 | ⊢ · = (.r‘𝑅) | 
| Ref | Expression | 
|---|---|
| dvdsrmul1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvdsr.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) | 
| 3 | dvdsr.2 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ∥ = (∥r‘𝑅)) | 
| 5 | ringsrg 13603 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) | 
| 7 | dvdsrmul1.3 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → · = (.r‘𝑅)) | 
| 9 | 2, 4, 6, 8 | dvdsrd 13650 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌))) | 
| 10 | 1 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) | 
| 11 | 3 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ∥ = (∥r‘𝑅)) | 
| 12 | simplll 533 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 13 | 12, 5 | syl 14 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ SRing) | 
| 14 | 7 | a1i 9 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → · = (.r‘𝑅)) | 
| 15 | simplr 528 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 16 | simpllr 534 | . . . . . . . . 9 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
| 17 | 1, 7 | ringcl 13569 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) | 
| 18 | 12, 15, 16, 17 | syl3anc 1249 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) | 
| 19 | simpr 110 | . . . . . . . 8 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 20 | 10, 11, 13, 14, 18, 19 | dvdsrmuld 13652 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ (𝑥 · (𝑋 · 𝑍))) | 
| 21 | 1, 7 | ringass 13572 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) | 
| 22 | 12, 19, 15, 16, 21 | syl13anc 1251 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) · 𝑍) = (𝑥 · (𝑋 · 𝑍))) | 
| 23 | 20, 22 | breqtrrd 4061 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍)) | 
| 24 | oveq1 5929 | . . . . . . 7 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑥 · 𝑋) · 𝑍) = (𝑌 · 𝑍)) | |
| 25 | 24 | breq2d 4045 | . . . . . 6 ⊢ ((𝑥 · 𝑋) = 𝑌 → ((𝑋 · 𝑍) ∥ ((𝑥 · 𝑋) · 𝑍) ↔ (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) | 
| 26 | 23, 25 | syl5ibcom 155 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) | 
| 27 | 26 | rexlimdva 2614 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) | 
| 28 | 27 | expimpd 363 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 · 𝑋) = 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) | 
| 29 | 9, 28 | sylbid 150 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵) → (𝑋 ∥ 𝑌 → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍))) | 
| 30 | 29 | 3impia 1202 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 SRingcsrg 13519 Ringcrg 13552 ∥rcdsr 13642 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-dvdsr 13645 | 
| This theorem is referenced by: unitmulcl 13669 | 
| Copyright terms: Public domain | W3C validator |