| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle1 | GIF version | ||
| Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10173 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzle 9690 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 ≤ cle 8138 ℤ≥cuz 9678 ...cfz 10160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-neg 8276 df-z 9403 df-uz 9679 df-fz 10161 |
| This theorem is referenced by: elfz1eq 10187 fzdisj 10204 elfznn 10206 fznatpl1 10228 fznn0sub2 10280 fz0fzdiffz0 10282 difelfznle 10287 iseqf1olemqcl 10676 iseqf1olemnab 10678 iseqf1olemab 10679 seq3f1olemqsumkj 10688 seq3f1olemqsumk 10689 seq3f1olemqsum 10690 seqf1oglem1 10696 seqf1oglem2 10697 seqfeq4g 10708 bcval4 10929 seq3coll 11019 fsum0diaglem 11836 cvgratnnlemabsle 11923 cvgratnnlemrate 11926 mertenslemi1 11931 fprodntrivap 11980 prmdc 12537 hashdvds 12628 prmdiveq 12643 4sqlem11 12809 4sqlem12 12810 gsumfzfsumlemm 14434 lgsdilem2 15598 lgsquadlem1 15639 inffz 16183 |
| Copyright terms: Public domain | W3C validator |