| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzle1 | GIF version | ||
| Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzle1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10096 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzle 9613 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ≤ cle 8062 ℤ≥cuz 9601 ...cfz 10083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: elfz1eq 10110 fzdisj 10127 elfznn 10129 fznatpl1 10151 fznn0sub2 10203 fz0fzdiffz0 10205 difelfznle 10210 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 seq3f1olemqsumkj 10603 seq3f1olemqsumk 10604 seq3f1olemqsum 10605 seqf1oglem1 10611 seqf1oglem2 10612 seqfeq4g 10623 bcval4 10844 seq3coll 10934 fsum0diaglem 11605 cvgratnnlemabsle 11692 cvgratnnlemrate 11695 mertenslemi1 11700 fprodntrivap 11749 prmdc 12298 hashdvds 12389 prmdiveq 12404 4sqlem11 12570 4sqlem12 12571 gsumfzfsumlemm 14143 lgsdilem2 15277 lgsquadlem1 15318 inffz 15716 |
| Copyright terms: Public domain | W3C validator |