![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfzle1 | GIF version |
Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzle1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 10087 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzle 9604 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝐾) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ≤ cle 8055 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-neg 8193 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: elfz1eq 10101 fzdisj 10118 elfznn 10120 fznatpl1 10142 fznn0sub2 10194 fz0fzdiffz0 10196 difelfznle 10201 iseqf1olemqcl 10570 iseqf1olemnab 10572 iseqf1olemab 10573 seq3f1olemqsumkj 10582 seq3f1olemqsumk 10583 seq3f1olemqsum 10584 seqf1oglem1 10590 seqf1oglem2 10591 seqfeq4g 10602 bcval4 10823 seq3coll 10913 fsum0diaglem 11583 cvgratnnlemabsle 11670 cvgratnnlemrate 11673 mertenslemi1 11678 fprodntrivap 11727 prmdc 12268 hashdvds 12359 prmdiveq 12374 4sqlem11 12539 4sqlem12 12540 gsumfzfsumlemm 14075 lgsdilem2 15152 lgsquadlem1 15191 inffz 15562 |
Copyright terms: Public domain | W3C validator |