ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzle1 GIF version

Theorem elfzle1 10149
Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzle1 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)

Proof of Theorem elfzle1
StepHypRef Expression
1 elfzuz 10143 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzle 9660 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cle 8108  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-neg 8246  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  elfz1eq  10157  fzdisj  10174  elfznn  10176  fznatpl1  10198  fznn0sub2  10250  fz0fzdiffz0  10252  difelfznle  10257  iseqf1olemqcl  10644  iseqf1olemnab  10646  iseqf1olemab  10647  seq3f1olemqsumkj  10656  seq3f1olemqsumk  10657  seq3f1olemqsum  10658  seqf1oglem1  10664  seqf1oglem2  10665  seqfeq4g  10676  bcval4  10897  seq3coll  10987  fsum0diaglem  11751  cvgratnnlemabsle  11838  cvgratnnlemrate  11841  mertenslemi1  11846  fprodntrivap  11895  prmdc  12452  hashdvds  12543  prmdiveq  12558  4sqlem11  12724  4sqlem12  12725  gsumfzfsumlemm  14349  lgsdilem2  15513  lgsquadlem1  15554  inffz  16011
  Copyright terms: Public domain W3C validator