ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzle1 GIF version

Theorem elfzle1 9962
Description: A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzle1 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)

Proof of Theorem elfzle1
StepHypRef Expression
1 elfzuz 9956 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzle 9478 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cle 7934  cuz 9466  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-neg 8072  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  elfz1eq  9970  fzdisj  9987  elfznn  9989  fznatpl1  10011  fznn0sub2  10063  fz0fzdiffz0  10065  difelfznle  10070  iseqf1olemqcl  10421  iseqf1olemnab  10423  iseqf1olemab  10424  seq3f1olemqsumkj  10433  seq3f1olemqsumk  10434  seq3f1olemqsum  10435  bcval4  10665  seq3coll  10755  fsum0diaglem  11381  cvgratnnlemabsle  11468  cvgratnnlemrate  11471  mertenslemi1  11476  fprodntrivap  11525  prmdc  12062  hashdvds  12153  prmdiveq  12168  lgsdilem2  13577  inffz  13948
  Copyright terms: Public domain W3C validator