ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdiveq Unicode version

Theorem prmdiveq 12429
Description: The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiveq  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )

Proof of Theorem prmdiveq
StepHypRef Expression
1 simpl1 1002 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  Prime )
2 prmz 12304 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  ZZ )
4 simpl2 1003 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  ZZ )
5 elfzelz 10117 . . . . . . . . . . 11  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  ZZ )
65ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  ZZ )
74, 6zmulcld 9471 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  ZZ )
8 1z 9369 . . . . . . . . 9  |-  1  e.  ZZ
9 zsubcl 9384 . . . . . . . . 9  |-  ( ( ( A  x.  S
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  S )  -  1 )  e.  ZZ )
107, 8, 9sylancl 413 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  S )  -  1 )  e.  ZZ )
11 prmdiv.1 . . . . . . . . . . . . . 14  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
1211prmdiv 12428 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
1312adantr 276 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) ) )
1413simpld 112 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  - 
1 ) ) )
15 elfzelz 10117 . . . . . . . . . . 11  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
1614, 15syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ZZ )
174, 16zmulcld 9471 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  ZZ )
18 zsubcl 9384 . . . . . . . . 9  |-  ( ( ( A  x.  R
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  R )  -  1 )  e.  ZZ )
1917, 8, 18sylancl 413 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  R )  -  1 )  e.  ZZ )
20 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  S )  - 
1 ) )
2113simprd 114 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  - 
1 ) )
223, 10, 19, 20, 21dvds2subd 12009 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( ( A  x.  S )  -  1 )  -  ( ( A  x.  R )  -  1 ) ) )
237zcnd 9466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  CC )
2417zcnd 9466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  CC )
25 1cnd 8059 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
1  e.  CC )
2623, 24, 25nnncan2d 8389 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
274zcnd 9466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  CC )
28 elfznn0 10206 . . . . . . . . . . 11  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  NN0 )
2928ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  NN0 )
3029nn0cnd 9321 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  CC )
3116zcnd 9466 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  CC )
3227, 30, 31subdid 8457 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  ( S  -  R )
)  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
3326, 32eqtr4d 2232 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( A  x.  ( S  -  R ) ) )
3422, 33breqtrd 4060 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( A  x.  ( S  -  R
) ) )
35 simpl3 1004 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  -.  P  ||  A )
36 coprm 12337 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
371, 4, 36syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( -.  P  ||  A 
<->  ( P  gcd  A
)  =  1 ) )
3835, 37mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  gcd  A
)  =  1 )
396, 16zsubcld 9470 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  -  R
)  e.  ZZ )
40 coprmdvds 12285 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ  /\  ( S  -  R )  e.  ZZ )  ->  (
( P  ||  ( A  x.  ( S  -  R ) )  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R ) ) )
413, 4, 39, 40syl3anc 1249 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( A  x.  ( S  -  R )
)  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R )
) )
4234, 38, 41mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( S  -  R ) )
43 prmnn 12303 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
441, 43syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  NN )
45 moddvds 11981 . . . . . 6  |-  ( ( P  e.  NN  /\  S  e.  ZZ  /\  R  e.  ZZ )  ->  (
( S  mod  P
)  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
4644, 6, 16, 45syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( S  mod  P )  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
4742, 46mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  ( R  mod  P ) )
48 zq 9717 . . . . . 6  |-  ( S  e.  ZZ  ->  S  e.  QQ )
496, 48syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  QQ )
50 nnq 9724 . . . . . 6  |-  ( P  e.  NN  ->  P  e.  QQ )
5144, 50syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  QQ )
52 elfzle1 10119 . . . . . 6  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  0  <_  S )
5352ad2antrl 490 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <_  S )
54 elfzle2 10120 . . . . . . 7  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  <_  ( P  -  1 ) )
5554ad2antrl 490 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <_  ( P  - 
1 ) )
56 zltlem1 9400 . . . . . . 7  |-  ( ( S  e.  ZZ  /\  P  e.  ZZ )  ->  ( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
576, 3, 56syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5855, 57mpbird 167 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <  P )
59 modqid 10458 . . . . 5  |-  ( ( ( S  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_  S  /\  S  <  P
) )  ->  ( S  mod  P )  =  S )
6049, 51, 53, 58, 59syl22anc 1250 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  S )
61 prmuz2 12324 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
62 uznn0sub 9650 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
631, 61, 623syl 17 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
64 zexpcl 10663 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
654, 63, 64syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  ZZ )
66 zq 9717 . . . . . . 7  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
6765, 66syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  QQ )
6844nngt0d 9051 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <  P )
69 modqabs2 10467 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
7067, 51, 68, 69syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
7111oveq1i 5935 . . . . 5  |-  ( R  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)
7270, 71, 113eqtr4g 2254 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  mod  P
)  =  R )
7347, 60, 723eqtr3d 2237 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  =  R )
7473ex 115 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  ->  S  =  R ) )
75 fz1ssfz0 10209 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7675sseli 3180 . . . . 5  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
77 eleq1 2259 . . . . 5  |-  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  <->  R  e.  ( 0 ... ( P  -  1 ) ) ) )
7876, 77imbitrrid 156 . . . 4  |-  ( S  =  R  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  ->  S  e.  ( 0 ... ( P  - 
1 ) ) ) )
79 oveq2 5933 . . . . . . 7  |-  ( S  =  R  ->  ( A  x.  S )  =  ( A  x.  R ) )
8079oveq1d 5940 . . . . . 6  |-  ( S  =  R  ->  (
( A  x.  S
)  -  1 )  =  ( ( A  x.  R )  - 
1 ) )
8180breq2d 4046 . . . . 5  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  S )  - 
1 )  <->  P  ||  (
( A  x.  R
)  -  1 ) ) )
8281biimprd 158 . . . 4  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  ->  P  ||  ( ( A  x.  S )  -  1 ) ) )
8378, 82anim12d 335 . . 3  |-  ( S  =  R  ->  (
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) )  ->  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) ) )
8412, 83syl5com 29 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  S )  - 
1 ) ) ) )
8574, 84impbid 129 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   NNcn 9007   2c2 9058   NN0cn0 9266   ZZcz 9343   ZZ>=cuz 9618   QQcq 9710   ...cfz 10100    mod cmo 10431   ^cexp 10647    || cdvds 11969    gcd cgcd 12145   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404
This theorem is referenced by:  prmdivdiv  12430  modprminveq  12444  wilthlem1  15300
  Copyright terms: Public domain W3C validator