| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmdiveq | Unicode version | ||
| Description: The modular inverse of
|
| Ref | Expression |
|---|---|
| prmdiv.1 |
|
| Ref | Expression |
|---|---|
| prmdiveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1024 |
. . . . . . . . 9
| |
| 2 | prmz 12633 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | simpl2 1025 |
. . . . . . . . . 10
| |
| 5 | elfzelz 10221 |
. . . . . . . . . . 11
| |
| 6 | 5 | ad2antrl 490 |
. . . . . . . . . 10
|
| 7 | 4, 6 | zmulcld 9575 |
. . . . . . . . 9
|
| 8 | 1z 9472 |
. . . . . . . . 9
| |
| 9 | zsubcl 9487 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . 8
|
| 11 | prmdiv.1 |
. . . . . . . . . . . . . 14
| |
| 12 | 11 | prmdiv 12757 |
. . . . . . . . . . . . 13
|
| 13 | 12 | adantr 276 |
. . . . . . . . . . . 12
|
| 14 | 13 | simpld 112 |
. . . . . . . . . . 11
|
| 15 | elfzelz 10221 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . 10
|
| 17 | 4, 16 | zmulcld 9575 |
. . . . . . . . 9
|
| 18 | zsubcl 9487 |
. . . . . . . . 9
| |
| 19 | 17, 8, 18 | sylancl 413 |
. . . . . . . 8
|
| 20 | simprr 531 |
. . . . . . . 8
| |
| 21 | 13 | simprd 114 |
. . . . . . . 8
|
| 22 | 3, 10, 19, 20, 21 | dvds2subd 12338 |
. . . . . . 7
|
| 23 | 7 | zcnd 9570 |
. . . . . . . . 9
|
| 24 | 17 | zcnd 9570 |
. . . . . . . . 9
|
| 25 | 1cnd 8162 |
. . . . . . . . 9
| |
| 26 | 23, 24, 25 | nnncan2d 8492 |
. . . . . . . 8
|
| 27 | 4 | zcnd 9570 |
. . . . . . . . 9
|
| 28 | elfznn0 10310 |
. . . . . . . . . . 11
| |
| 29 | 28 | ad2antrl 490 |
. . . . . . . . . 10
|
| 30 | 29 | nn0cnd 9424 |
. . . . . . . . 9
|
| 31 | 16 | zcnd 9570 |
. . . . . . . . 9
|
| 32 | 27, 30, 31 | subdid 8560 |
. . . . . . . 8
|
| 33 | 26, 32 | eqtr4d 2265 |
. . . . . . 7
|
| 34 | 22, 33 | breqtrd 4109 |
. . . . . 6
|
| 35 | simpl3 1026 |
. . . . . . 7
| |
| 36 | coprm 12666 |
. . . . . . . 8
| |
| 37 | 1, 4, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
|
| 39 | 6, 16 | zsubcld 9574 |
. . . . . . 7
|
| 40 | coprmdvds 12614 |
. . . . . . 7
| |
| 41 | 3, 4, 39, 40 | syl3anc 1271 |
. . . . . 6
|
| 42 | 34, 38, 41 | mp2and 433 |
. . . . 5
|
| 43 | prmnn 12632 |
. . . . . . 7
| |
| 44 | 1, 43 | syl 14 |
. . . . . 6
|
| 45 | moddvds 12310 |
. . . . . 6
| |
| 46 | 44, 6, 16, 45 | syl3anc 1271 |
. . . . 5
|
| 47 | 42, 46 | mpbird 167 |
. . . 4
|
| 48 | zq 9821 |
. . . . . 6
| |
| 49 | 6, 48 | syl 14 |
. . . . 5
|
| 50 | nnq 9828 |
. . . . . 6
| |
| 51 | 44, 50 | syl 14 |
. . . . 5
|
| 52 | elfzle1 10223 |
. . . . . 6
| |
| 53 | 52 | ad2antrl 490 |
. . . . 5
|
| 54 | elfzle2 10224 |
. . . . . . 7
| |
| 55 | 54 | ad2antrl 490 |
. . . . . 6
|
| 56 | zltlem1 9504 |
. . . . . . 7
| |
| 57 | 6, 3, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 55, 57 | mpbird 167 |
. . . . 5
|
| 59 | modqid 10571 |
. . . . 5
| |
| 60 | 49, 51, 53, 58, 59 | syl22anc 1272 |
. . . 4
|
| 61 | prmuz2 12653 |
. . . . . . . . 9
| |
| 62 | uznn0sub 9754 |
. . . . . . . . 9
| |
| 63 | 1, 61, 62 | 3syl 17 |
. . . . . . . 8
|
| 64 | zexpcl 10776 |
. . . . . . . 8
| |
| 65 | 4, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | zq 9821 |
. . . . . . 7
| |
| 67 | 65, 66 | syl 14 |
. . . . . 6
|
| 68 | 44 | nngt0d 9154 |
. . . . . 6
|
| 69 | modqabs2 10580 |
. . . . . 6
| |
| 70 | 67, 51, 68, 69 | syl3anc 1271 |
. . . . 5
|
| 71 | 11 | oveq1i 6011 |
. . . . 5
|
| 72 | 70, 71, 11 | 3eqtr4g 2287 |
. . . 4
|
| 73 | 47, 60, 72 | 3eqtr3d 2270 |
. . 3
|
| 74 | 73 | ex 115 |
. 2
|
| 75 | fz1ssfz0 10313 |
. . . . . 6
| |
| 76 | 75 | sseli 3220 |
. . . . 5
|
| 77 | eleq1 2292 |
. . . . 5
| |
| 78 | 76, 77 | imbitrrid 156 |
. . . 4
|
| 79 | oveq2 6009 |
. . . . . . 7
| |
| 80 | 79 | oveq1d 6016 |
. . . . . 6
|
| 81 | 80 | breq2d 4095 |
. . . . 5
|
| 82 | 81 | biimprd 158 |
. . . 4
|
| 83 | 78, 82 | anim12d 335 |
. . 3
|
| 84 | 12, 83 | syl5com 29 |
. 2
|
| 85 | 74, 84 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-2o 6563 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-sup 7151 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-proddc 12062 df-dvds 12299 df-gcd 12475 df-prm 12630 df-phi 12733 |
| This theorem is referenced by: prmdivdiv 12759 modprminveq 12773 wilthlem1 15654 |
| Copyright terms: Public domain | W3C validator |