| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmdiveq | Unicode version | ||
| Description: The modular inverse of
|
| Ref | Expression |
|---|---|
| prmdiv.1 |
|
| Ref | Expression |
|---|---|
| prmdiveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . . . . 9
| |
| 2 | prmz 12548 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | simpl2 1004 |
. . . . . . . . . 10
| |
| 5 | elfzelz 10182 |
. . . . . . . . . . 11
| |
| 6 | 5 | ad2antrl 490 |
. . . . . . . . . 10
|
| 7 | 4, 6 | zmulcld 9536 |
. . . . . . . . 9
|
| 8 | 1z 9433 |
. . . . . . . . 9
| |
| 9 | zsubcl 9448 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . 8
|
| 11 | prmdiv.1 |
. . . . . . . . . . . . . 14
| |
| 12 | 11 | prmdiv 12672 |
. . . . . . . . . . . . 13
|
| 13 | 12 | adantr 276 |
. . . . . . . . . . . 12
|
| 14 | 13 | simpld 112 |
. . . . . . . . . . 11
|
| 15 | elfzelz 10182 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . 10
|
| 17 | 4, 16 | zmulcld 9536 |
. . . . . . . . 9
|
| 18 | zsubcl 9448 |
. . . . . . . . 9
| |
| 19 | 17, 8, 18 | sylancl 413 |
. . . . . . . 8
|
| 20 | simprr 531 |
. . . . . . . 8
| |
| 21 | 13 | simprd 114 |
. . . . . . . 8
|
| 22 | 3, 10, 19, 20, 21 | dvds2subd 12253 |
. . . . . . 7
|
| 23 | 7 | zcnd 9531 |
. . . . . . . . 9
|
| 24 | 17 | zcnd 9531 |
. . . . . . . . 9
|
| 25 | 1cnd 8123 |
. . . . . . . . 9
| |
| 26 | 23, 24, 25 | nnncan2d 8453 |
. . . . . . . 8
|
| 27 | 4 | zcnd 9531 |
. . . . . . . . 9
|
| 28 | elfznn0 10271 |
. . . . . . . . . . 11
| |
| 29 | 28 | ad2antrl 490 |
. . . . . . . . . 10
|
| 30 | 29 | nn0cnd 9385 |
. . . . . . . . 9
|
| 31 | 16 | zcnd 9531 |
. . . . . . . . 9
|
| 32 | 27, 30, 31 | subdid 8521 |
. . . . . . . 8
|
| 33 | 26, 32 | eqtr4d 2243 |
. . . . . . 7
|
| 34 | 22, 33 | breqtrd 4085 |
. . . . . 6
|
| 35 | simpl3 1005 |
. . . . . . 7
| |
| 36 | coprm 12581 |
. . . . . . . 8
| |
| 37 | 1, 4, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
|
| 39 | 6, 16 | zsubcld 9535 |
. . . . . . 7
|
| 40 | coprmdvds 12529 |
. . . . . . 7
| |
| 41 | 3, 4, 39, 40 | syl3anc 1250 |
. . . . . 6
|
| 42 | 34, 38, 41 | mp2and 433 |
. . . . 5
|
| 43 | prmnn 12547 |
. . . . . . 7
| |
| 44 | 1, 43 | syl 14 |
. . . . . 6
|
| 45 | moddvds 12225 |
. . . . . 6
| |
| 46 | 44, 6, 16, 45 | syl3anc 1250 |
. . . . 5
|
| 47 | 42, 46 | mpbird 167 |
. . . 4
|
| 48 | zq 9782 |
. . . . . 6
| |
| 49 | 6, 48 | syl 14 |
. . . . 5
|
| 50 | nnq 9789 |
. . . . . 6
| |
| 51 | 44, 50 | syl 14 |
. . . . 5
|
| 52 | elfzle1 10184 |
. . . . . 6
| |
| 53 | 52 | ad2antrl 490 |
. . . . 5
|
| 54 | elfzle2 10185 |
. . . . . . 7
| |
| 55 | 54 | ad2antrl 490 |
. . . . . 6
|
| 56 | zltlem1 9465 |
. . . . . . 7
| |
| 57 | 6, 3, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 55, 57 | mpbird 167 |
. . . . 5
|
| 59 | modqid 10531 |
. . . . 5
| |
| 60 | 49, 51, 53, 58, 59 | syl22anc 1251 |
. . . 4
|
| 61 | prmuz2 12568 |
. . . . . . . . 9
| |
| 62 | uznn0sub 9715 |
. . . . . . . . 9
| |
| 63 | 1, 61, 62 | 3syl 17 |
. . . . . . . 8
|
| 64 | zexpcl 10736 |
. . . . . . . 8
| |
| 65 | 4, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | zq 9782 |
. . . . . . 7
| |
| 67 | 65, 66 | syl 14 |
. . . . . 6
|
| 68 | 44 | nngt0d 9115 |
. . . . . 6
|
| 69 | modqabs2 10540 |
. . . . . 6
| |
| 70 | 67, 51, 68, 69 | syl3anc 1250 |
. . . . 5
|
| 71 | 11 | oveq1i 5977 |
. . . . 5
|
| 72 | 70, 71, 11 | 3eqtr4g 2265 |
. . . 4
|
| 73 | 47, 60, 72 | 3eqtr3d 2248 |
. . 3
|
| 74 | 73 | ex 115 |
. 2
|
| 75 | fz1ssfz0 10274 |
. . . . . 6
| |
| 76 | 75 | sseli 3197 |
. . . . 5
|
| 77 | eleq1 2270 |
. . . . 5
| |
| 78 | 76, 77 | imbitrrid 156 |
. . . 4
|
| 79 | oveq2 5975 |
. . . . . . 7
| |
| 80 | 79 | oveq1d 5982 |
. . . . . 6
|
| 81 | 80 | breq2d 4071 |
. . . . 5
|
| 82 | 81 | biimprd 158 |
. . . 4
|
| 83 | 78, 82 | anim12d 335 |
. . 3
|
| 84 | 12, 83 | syl5com 29 |
. 2
|
| 85 | 74, 84 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-2o 6526 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 df-dvds 12214 df-gcd 12390 df-prm 12545 df-phi 12648 |
| This theorem is referenced by: prmdivdiv 12674 modprminveq 12688 wilthlem1 15567 |
| Copyright terms: Public domain | W3C validator |