ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdiveq Unicode version

Theorem prmdiveq 12238
Description: The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
Assertion
Ref Expression
prmdiveq  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )

Proof of Theorem prmdiveq
StepHypRef Expression
1 simpl1 1000 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  Prime )
2 prmz 12113 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  ZZ )
4 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  ZZ )
5 elfzelz 10027 . . . . . . . . . . 11  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  ZZ )
65ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  ZZ )
74, 6zmulcld 9383 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  ZZ )
8 1z 9281 . . . . . . . . 9  |-  1  e.  ZZ
9 zsubcl 9296 . . . . . . . . 9  |-  ( ( ( A  x.  S
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  S )  -  1 )  e.  ZZ )
107, 8, 9sylancl 413 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  S )  -  1 )  e.  ZZ )
11 prmdiv.1 . . . . . . . . . . . . . 14  |-  R  =  ( ( A ^
( P  -  2 ) )  mod  P
)
1211prmdiv 12237 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  R )  - 
1 ) ) )
1312adantr 276 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) ) )
1413simpld 112 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ( 1 ... ( P  - 
1 ) ) )
15 elfzelz 10027 . . . . . . . . . . 11  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ZZ )
1614, 15syl 14 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  ZZ )
174, 16zmulcld 9383 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  ZZ )
18 zsubcl 9296 . . . . . . . . 9  |-  ( ( ( A  x.  R
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( A  x.  R )  -  1 )  e.  ZZ )
1917, 8, 18sylancl 413 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( A  x.  R )  -  1 )  e.  ZZ )
20 simprr 531 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  S )  - 
1 ) )
2113simprd 114 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( A  x.  R )  - 
1 ) )
223, 10, 19, 20, 21dvds2subd 11836 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( ( ( A  x.  S )  -  1 )  -  ( ( A  x.  R )  -  1 ) ) )
237zcnd 9378 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  S
)  e.  CC )
2417zcnd 9378 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  R
)  e.  CC )
25 1cnd 7975 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
1  e.  CC )
2623, 24, 25nnncan2d 8305 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
274zcnd 9378 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  A  e.  CC )
28 elfznn0 10116 . . . . . . . . . . 11  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  e.  NN0 )
2928ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  NN0 )
3029nn0cnd 9233 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  CC )
3116zcnd 9378 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  R  e.  CC )
3227, 30, 31subdid 8373 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A  x.  ( S  -  R )
)  =  ( ( A  x.  S )  -  ( A  x.  R ) ) )
3326, 32eqtr4d 2213 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A  x.  S )  - 
1 )  -  (
( A  x.  R
)  -  1 ) )  =  ( A  x.  ( S  -  R ) ) )
3422, 33breqtrd 4031 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( A  x.  ( S  -  R
) ) )
35 simpl3 1002 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  -.  P  ||  A )
36 coprm 12146 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
371, 4, 36syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( -.  P  ||  A 
<->  ( P  gcd  A
)  =  1 ) )
3835, 37mpbid 147 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  gcd  A
)  =  1 )
396, 16zsubcld 9382 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  -  R
)  e.  ZZ )
40 coprmdvds 12094 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ  /\  ( S  -  R )  e.  ZZ )  ->  (
( P  ||  ( A  x.  ( S  -  R ) )  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R ) ) )
413, 4, 39, 40syl3anc 1238 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( P  ||  ( A  x.  ( S  -  R )
)  /\  ( P  gcd  A )  =  1 )  ->  P  ||  ( S  -  R )
) )
4234, 38, 41mp2and 433 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  ||  ( S  -  R ) )
43 prmnn 12112 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
441, 43syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  NN )
45 moddvds 11808 . . . . . 6  |-  ( ( P  e.  NN  /\  S  e.  ZZ  /\  R  e.  ZZ )  ->  (
( S  mod  P
)  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
4644, 6, 16, 45syl3anc 1238 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( S  mod  P )  =  ( R  mod  P )  <->  P  ||  ( S  -  R )
) )
4742, 46mpbird 167 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  ( R  mod  P ) )
48 zq 9628 . . . . . 6  |-  ( S  e.  ZZ  ->  S  e.  QQ )
496, 48syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  e.  QQ )
50 nnq 9635 . . . . . 6  |-  ( P  e.  NN  ->  P  e.  QQ )
5144, 50syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  P  e.  QQ )
52 elfzle1 10029 . . . . . 6  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  0  <_  S )
5352ad2antrl 490 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <_  S )
54 elfzle2 10030 . . . . . . 7  |-  ( S  e.  ( 0 ... ( P  -  1 ) )  ->  S  <_  ( P  -  1 ) )
5554ad2antrl 490 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <_  ( P  - 
1 ) )
56 zltlem1 9312 . . . . . . 7  |-  ( ( S  e.  ZZ  /\  P  e.  ZZ )  ->  ( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
576, 3, 56syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  <  P  <->  S  <_  ( P  - 
1 ) ) )
5855, 57mpbird 167 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  <  P )
59 modqid 10351 . . . . 5  |-  ( ( ( S  e.  QQ  /\  P  e.  QQ )  /\  ( 0  <_  S  /\  S  <  P
) )  ->  ( S  mod  P )  =  S )
6049, 51, 53, 58, 59syl22anc 1239 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( S  mod  P
)  =  S )
61 prmuz2 12133 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
62 uznn0sub 9561 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  2 )  e. 
NN0 )
631, 61, 623syl 17 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( P  -  2 )  e.  NN0 )
64 zexpcl 10537 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
654, 63, 64syl2anc 411 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  ZZ )
66 zq 9628 . . . . . . 7  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
6765, 66syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( A ^ ( P  -  2 ) )  e.  QQ )
6844nngt0d 8965 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
0  <  P )
69 modqabs2 10360 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
7067, 51, 68, 69syl3anc 1238 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
7111oveq1i 5887 . . . . 5  |-  ( R  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
)
7270, 71, 113eqtr4g 2235 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  -> 
( R  mod  P
)  =  R )
7347, 60, 723eqtr3d 2218 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  /\  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) )  ->  S  =  R )
7473ex 115 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  ->  S  =  R ) )
75 fz1ssfz0 10119 . . . . . 6  |-  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) )
7675sseli 3153 . . . . 5  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
77 eleq1 2240 . . . . 5  |-  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  <->  R  e.  ( 0 ... ( P  -  1 ) ) ) )
7876, 77imbitrrid 156 . . . 4  |-  ( S  =  R  ->  ( R  e.  ( 1 ... ( P  - 
1 ) )  ->  S  e.  ( 0 ... ( P  - 
1 ) ) ) )
79 oveq2 5885 . . . . . . 7  |-  ( S  =  R  ->  ( A  x.  S )  =  ( A  x.  R ) )
8079oveq1d 5892 . . . . . 6  |-  ( S  =  R  ->  (
( A  x.  S
)  -  1 )  =  ( ( A  x.  R )  - 
1 ) )
8180breq2d 4017 . . . . 5  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  S )  - 
1 )  <->  P  ||  (
( A  x.  R
)  -  1 ) ) )
8281biimprd 158 . . . 4  |-  ( S  =  R  ->  ( P  ||  ( ( A  x.  R )  - 
1 )  ->  P  ||  ( ( A  x.  S )  -  1 ) ) )
8378, 82anim12d 335 . . 3  |-  ( S  =  R  ->  (
( R  e.  ( 1 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  R
)  -  1 ) )  ->  ( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  ( ( A  x.  S )  -  1 ) ) ) )
8412, 83syl5com 29 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( S  =  R  ->  ( S  e.  ( 0 ... ( P  - 
1 ) )  /\  P  ||  ( ( A  x.  S )  - 
1 ) ) ) )
8574, 84impbid 129 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( S  e.  ( 0 ... ( P  -  1 ) )  /\  P  ||  (
( A  x.  S
)  -  1 ) )  <->  S  =  R
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130   NNcn 8921   2c2 8972   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   QQcq 9621   ...cfz 10010    mod cmo 10324   ^cexp 10521    || cdvds 11796    gcd cgcd 11945   Primecprime 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-2o 6420  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561  df-dvds 11797  df-gcd 11946  df-prm 12110  df-phi 12213
This theorem is referenced by:  prmdivdiv  12239  modprminveq  12252
  Copyright terms: Public domain W3C validator