| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmdiveq | Unicode version | ||
| Description: The modular inverse of
|
| Ref | Expression |
|---|---|
| prmdiv.1 |
|
| Ref | Expression |
|---|---|
| prmdiveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . . . . . . 9
| |
| 2 | prmz 12433 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | simpl2 1004 |
. . . . . . . . . 10
| |
| 5 | elfzelz 10147 |
. . . . . . . . . . 11
| |
| 6 | 5 | ad2antrl 490 |
. . . . . . . . . 10
|
| 7 | 4, 6 | zmulcld 9501 |
. . . . . . . . 9
|
| 8 | 1z 9398 |
. . . . . . . . 9
| |
| 9 | zsubcl 9413 |
. . . . . . . . 9
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . . . . . . 8
|
| 11 | prmdiv.1 |
. . . . . . . . . . . . . 14
| |
| 12 | 11 | prmdiv 12557 |
. . . . . . . . . . . . 13
|
| 13 | 12 | adantr 276 |
. . . . . . . . . . . 12
|
| 14 | 13 | simpld 112 |
. . . . . . . . . . 11
|
| 15 | elfzelz 10147 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . 10
|
| 17 | 4, 16 | zmulcld 9501 |
. . . . . . . . 9
|
| 18 | zsubcl 9413 |
. . . . . . . . 9
| |
| 19 | 17, 8, 18 | sylancl 413 |
. . . . . . . 8
|
| 20 | simprr 531 |
. . . . . . . 8
| |
| 21 | 13 | simprd 114 |
. . . . . . . 8
|
| 22 | 3, 10, 19, 20, 21 | dvds2subd 12138 |
. . . . . . 7
|
| 23 | 7 | zcnd 9496 |
. . . . . . . . 9
|
| 24 | 17 | zcnd 9496 |
. . . . . . . . 9
|
| 25 | 1cnd 8088 |
. . . . . . . . 9
| |
| 26 | 23, 24, 25 | nnncan2d 8418 |
. . . . . . . 8
|
| 27 | 4 | zcnd 9496 |
. . . . . . . . 9
|
| 28 | elfznn0 10236 |
. . . . . . . . . . 11
| |
| 29 | 28 | ad2antrl 490 |
. . . . . . . . . 10
|
| 30 | 29 | nn0cnd 9350 |
. . . . . . . . 9
|
| 31 | 16 | zcnd 9496 |
. . . . . . . . 9
|
| 32 | 27, 30, 31 | subdid 8486 |
. . . . . . . 8
|
| 33 | 26, 32 | eqtr4d 2241 |
. . . . . . 7
|
| 34 | 22, 33 | breqtrd 4070 |
. . . . . 6
|
| 35 | simpl3 1005 |
. . . . . . 7
| |
| 36 | coprm 12466 |
. . . . . . . 8
| |
| 37 | 1, 4, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
|
| 39 | 6, 16 | zsubcld 9500 |
. . . . . . 7
|
| 40 | coprmdvds 12414 |
. . . . . . 7
| |
| 41 | 3, 4, 39, 40 | syl3anc 1250 |
. . . . . 6
|
| 42 | 34, 38, 41 | mp2and 433 |
. . . . 5
|
| 43 | prmnn 12432 |
. . . . . . 7
| |
| 44 | 1, 43 | syl 14 |
. . . . . 6
|
| 45 | moddvds 12110 |
. . . . . 6
| |
| 46 | 44, 6, 16, 45 | syl3anc 1250 |
. . . . 5
|
| 47 | 42, 46 | mpbird 167 |
. . . 4
|
| 48 | zq 9747 |
. . . . . 6
| |
| 49 | 6, 48 | syl 14 |
. . . . 5
|
| 50 | nnq 9754 |
. . . . . 6
| |
| 51 | 44, 50 | syl 14 |
. . . . 5
|
| 52 | elfzle1 10149 |
. . . . . 6
| |
| 53 | 52 | ad2antrl 490 |
. . . . 5
|
| 54 | elfzle2 10150 |
. . . . . . 7
| |
| 55 | 54 | ad2antrl 490 |
. . . . . 6
|
| 56 | zltlem1 9430 |
. . . . . . 7
| |
| 57 | 6, 3, 56 | syl2anc 411 |
. . . . . 6
|
| 58 | 55, 57 | mpbird 167 |
. . . . 5
|
| 59 | modqid 10494 |
. . . . 5
| |
| 60 | 49, 51, 53, 58, 59 | syl22anc 1251 |
. . . 4
|
| 61 | prmuz2 12453 |
. . . . . . . . 9
| |
| 62 | uznn0sub 9680 |
. . . . . . . . 9
| |
| 63 | 1, 61, 62 | 3syl 17 |
. . . . . . . 8
|
| 64 | zexpcl 10699 |
. . . . . . . 8
| |
| 65 | 4, 63, 64 | syl2anc 411 |
. . . . . . 7
|
| 66 | zq 9747 |
. . . . . . 7
| |
| 67 | 65, 66 | syl 14 |
. . . . . 6
|
| 68 | 44 | nngt0d 9080 |
. . . . . 6
|
| 69 | modqabs2 10503 |
. . . . . 6
| |
| 70 | 67, 51, 68, 69 | syl3anc 1250 |
. . . . 5
|
| 71 | 11 | oveq1i 5954 |
. . . . 5
|
| 72 | 70, 71, 11 | 3eqtr4g 2263 |
. . . 4
|
| 73 | 47, 60, 72 | 3eqtr3d 2246 |
. . 3
|
| 74 | 73 | ex 115 |
. 2
|
| 75 | fz1ssfz0 10239 |
. . . . . 6
| |
| 76 | 75 | sseli 3189 |
. . . . 5
|
| 77 | eleq1 2268 |
. . . . 5
| |
| 78 | 76, 77 | imbitrrid 156 |
. . . 4
|
| 79 | oveq2 5952 |
. . . . . . 7
| |
| 80 | 79 | oveq1d 5959 |
. . . . . 6
|
| 81 | 80 | breq2d 4056 |
. . . . 5
|
| 82 | 81 | biimprd 158 |
. . . 4
|
| 83 | 78, 82 | anim12d 335 |
. . 3
|
| 84 | 12, 83 | syl5com 29 |
. 2
|
| 85 | 74, 84 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-2o 6503 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-proddc 11862 df-dvds 12099 df-gcd 12275 df-prm 12430 df-phi 12533 |
| This theorem is referenced by: prmdivdiv 12559 modprminveq 12573 wilthlem1 15452 |
| Copyright terms: Public domain | W3C validator |