ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem13m Unicode version

Theorem 4sqlem13m 12438
Description: Lemma for 4sq 12445. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem13m  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, j    ph, i, n
Allowed substitution hints:    ph( x, y, z, w, j)    P( j)    S( x, y, z, w, j)    T( x, y, z, w, i, n)    M( x, y, z, w, i, j, n)    N( x, y, z, w, i, j)

Proof of Theorem 4sqlem13m
Dummy variables  k  u  m  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sqlem11.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . 3  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . 3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . 3  |-  ( ph  ->  P  e.  Prime )
5 eqid 2189 . . 3  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }
6 eqid 2189 . . 3  |-  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )  =  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem12 12437 . 2  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
8 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  ( 1 ... ( P  - 
1 ) ) )
9 elfznn 10086 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( P  -  1 ) )  ->  k  e.  NN )
108, 9syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  NN )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
12 abs1 11116 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1312oveq1i 5907 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
14 sq1 10648 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
1513, 14eqtri 2210 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  1
1615oveq2i 5908 . . . . . . . . 9  |-  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( ( ( abs `  u ) ^ 2 )  +  1 )
17 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  u  e.  ZZ[_i] )
18 1z 9310 . . . . . . . . . . 11  |-  1  e.  ZZ
19 zgz 12408 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . . . 10  |-  1  e.  ZZ[_i]
2114sqlem4a 12426 . . . . . . . . . 10  |-  ( ( u  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
2217, 20, 21sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  1 ) ^ 2 ) )  e.  S )
2316, 22eqeltrrid 2277 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  e.  S )
2411, 23eqeltrrd 2267 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  x.  P
)  e.  S )
25 oveq1 5904 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  P )  =  ( k  x.  P ) )
2625eleq1d 2258 . . . . . . . 8  |-  ( i  =  k  ->  (
( i  x.  P
)  e.  S  <->  ( k  x.  P )  e.  S
) )
27 4sq.6 . . . . . . . 8  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
2826, 27elrab2 2911 . . . . . . 7  |-  ( k  e.  T  <->  ( k  e.  NN  /\  ( k  x.  P )  e.  S ) )
2910, 24, 28sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  T )
30 elex2 2768 . . . . . 6  |-  ( k  e.  T  ->  E. j 
j  e.  T )
3129, 30syl 14 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  E. j  j  e.  T )
3227ssrab3 3256 . . . . . . . 8  |-  T  C_  NN
33 4sq.7 . . . . . . . . 9  |-  M  = inf ( T ,  RR ,  <  )
34 1zzd 9311 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
1  e.  ZZ )
35 nnuz 9595 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
3635rabeqi 2745 . . . . . . . . . . 11  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
3727, 36eqtri 2210 . . . . . . . . . 10  |-  T  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
38 elfznn 10086 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... k )  ->  i  e.  NN )
3938adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  i  e.  NN )
40 prmnn 12145 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
414, 40syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
4241ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  P  e.  NN )
4339, 42nnmulcld 8999 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN )
4443nnnn0d 9260 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN0 )
4514sqlemsdc 12435 . . . . . . . . . . 11  |-  ( ( i  x.  P )  e.  NN0  -> DECID  ( i  x.  P
)  e.  S )
4644, 45syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  -> DECID  ( i  x.  P
)  e.  S )
4734, 37, 29, 46infssuzcldc 11987 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  e.  T )
4833, 47eqeltrid 2276 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  T )
4932, 48sselid 3168 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  NN )
5049nnred 8963 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  RR )
5110nnred 8963 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  RR )
5241nnred 8963 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  RR )
5434, 37, 29, 46infssuzledc 11986 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  <_  k )
5533, 54eqbrtrid 4053 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <_  k )
56 prmz 12146 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
574, 56syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
5857ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  ZZ )
59 elfzm11 10123 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
6018, 58, 59sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
618, 60mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) )
6261simp3d 1013 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  <  P )
6350, 51, 53, 55, 62lelttrd 8113 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <  P )
6431, 63jca 306 . . . 4  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( E. j  j  e.  T  /\  M  <  P ) )
6564ex 115 . . 3  |-  ( (
ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
6665rexlimdvva 2615 . 2  |-  ( ph  ->  ( E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
677, 66mpd 13 1  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   E.wrex 2469   {crab 2472    C_ wss 3144   class class class wbr 4018    |-> cmpt 4079   ` cfv 5235  (class class class)co 5897  infcinf 7013   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023    <_ cle 8024    - cmin 8159   NNcn 8950   2c2 9001   NN0cn0 9207   ZZcz 9284   ZZ>=cuz 9559   ...cfz 10040    mod cmo 10355   ^cexp 10553   abscabs 11041   Primecprime 12142   ZZ[_i]cgz 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143  df-gz 12405
This theorem is referenced by:  4sqlem14  12439  4sqlem17  12442  4sqlem18  12443
  Copyright terms: Public domain W3C validator