ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem13m Unicode version

Theorem 4sqlem13m 12572
Description: Lemma for 4sq 12579. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem13m  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, j    ph, i, n
Allowed substitution hints:    ph( x, y, z, w, j)    P( j)    S( x, y, z, w, j)    T( x, y, z, w, i, n)    M( x, y, z, w, i, j, n)    N( x, y, z, w, i, j)

Proof of Theorem 4sqlem13m
Dummy variables  k  u  m  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sqlem11.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . 3  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . 3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . 3  |-  ( ph  ->  P  e.  Prime )
5 eqid 2196 . . 3  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }
6 eqid 2196 . . 3  |-  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )  =  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem12 12571 . 2  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
8 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  ( 1 ... ( P  - 
1 ) ) )
9 elfznn 10129 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( P  -  1 ) )  ->  k  e.  NN )
108, 9syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  NN )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
12 abs1 11237 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1312oveq1i 5932 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
14 sq1 10725 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
1513, 14eqtri 2217 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  1
1615oveq2i 5933 . . . . . . . . 9  |-  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( ( ( abs `  u ) ^ 2 )  +  1 )
17 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  u  e.  ZZ[_i] )
18 1z 9352 . . . . . . . . . . 11  |-  1  e.  ZZ
19 zgz 12542 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . . . 10  |-  1  e.  ZZ[_i]
2114sqlem4a 12560 . . . . . . . . . 10  |-  ( ( u  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
2217, 20, 21sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  1 ) ^ 2 ) )  e.  S )
2316, 22eqeltrrid 2284 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  e.  S )
2411, 23eqeltrrd 2274 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  x.  P
)  e.  S )
25 oveq1 5929 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  P )  =  ( k  x.  P ) )
2625eleq1d 2265 . . . . . . . 8  |-  ( i  =  k  ->  (
( i  x.  P
)  e.  S  <->  ( k  x.  P )  e.  S
) )
27 4sq.6 . . . . . . . 8  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
2826, 27elrab2 2923 . . . . . . 7  |-  ( k  e.  T  <->  ( k  e.  NN  /\  ( k  x.  P )  e.  S ) )
2910, 24, 28sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  T )
30 elex2 2779 . . . . . 6  |-  ( k  e.  T  ->  E. j 
j  e.  T )
3129, 30syl 14 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  E. j  j  e.  T )
3227ssrab3 3269 . . . . . . . 8  |-  T  C_  NN
33 4sq.7 . . . . . . . . 9  |-  M  = inf ( T ,  RR ,  <  )
34 1zzd 9353 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
1  e.  ZZ )
35 nnuz 9637 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
3635rabeqi 2756 . . . . . . . . . . 11  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
3727, 36eqtri 2217 . . . . . . . . . 10  |-  T  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
38 elfznn 10129 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... k )  ->  i  e.  NN )
3938adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  i  e.  NN )
40 prmnn 12278 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
414, 40syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
4241ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  P  e.  NN )
4339, 42nnmulcld 9039 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN )
4443nnnn0d 9302 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN0 )
4514sqlemsdc 12569 . . . . . . . . . . 11  |-  ( ( i  x.  P )  e.  NN0  -> DECID  ( i  x.  P
)  e.  S )
4644, 45syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  -> DECID  ( i  x.  P
)  e.  S )
4734, 37, 29, 46infssuzcldc 10325 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  e.  T )
4833, 47eqeltrid 2283 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  T )
4932, 48sselid 3181 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  NN )
5049nnred 9003 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  RR )
5110nnred 9003 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  RR )
5241nnred 9003 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  RR )
5434, 37, 29, 46infssuzledc 10324 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  <_  k )
5533, 54eqbrtrid 4068 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <_  k )
56 prmz 12279 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
574, 56syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
5857ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  ZZ )
59 elfzm11 10166 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
6018, 58, 59sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
618, 60mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) )
6261simp3d 1013 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  <  P )
6350, 51, 53, 55, 62lelttrd 8151 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <  P )
6431, 63jca 306 . . . 4  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( E. j  j  e.  T  /\  M  <  P ) )
6564ex 115 . . 3  |-  ( (
ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
6665rexlimdvva 2622 . 2  |-  ( ph  ->  ( E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
677, 66mpd 13 1  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   {crab 2479    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922  infcinf 7049   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    mod cmo 10414   ^cexp 10630   abscabs 11162   Primecprime 12275   ZZ[_i]cgz 12538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121  df-prm 12276  df-gz 12539
This theorem is referenced by:  4sqlem14  12573  4sqlem17  12576  4sqlem18  12577
  Copyright terms: Public domain W3C validator