ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem13m Unicode version

Theorem 4sqlem13m 12599
Description: Lemma for 4sq 12606. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem13m  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, j    ph, i, n
Allowed substitution hints:    ph( x, y, z, w, j)    P( j)    S( x, y, z, w, j)    T( x, y, z, w, i, n)    M( x, y, z, w, i, j, n)    N( x, y, z, w, i, j)

Proof of Theorem 4sqlem13m
Dummy variables  k  u  m  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sqlem11.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . 3  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . 3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . 3  |-  ( ph  ->  P  e.  Prime )
5 eqid 2196 . . 3  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }
6 eqid 2196 . . 3  |-  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )  =  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem12 12598 . 2  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
8 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  ( 1 ... ( P  - 
1 ) ) )
9 elfznn 10148 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( P  -  1 ) )  ->  k  e.  NN )
108, 9syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  NN )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
12 abs1 11256 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1312oveq1i 5935 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
14 sq1 10744 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
1513, 14eqtri 2217 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  1
1615oveq2i 5936 . . . . . . . . 9  |-  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( ( ( abs `  u ) ^ 2 )  +  1 )
17 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  u  e.  ZZ[_i] )
18 1z 9371 . . . . . . . . . . 11  |-  1  e.  ZZ
19 zgz 12569 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . . . 10  |-  1  e.  ZZ[_i]
2114sqlem4a 12587 . . . . . . . . . 10  |-  ( ( u  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
2217, 20, 21sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  1 ) ^ 2 ) )  e.  S )
2316, 22eqeltrrid 2284 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  e.  S )
2411, 23eqeltrrd 2274 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  x.  P
)  e.  S )
25 oveq1 5932 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  P )  =  ( k  x.  P ) )
2625eleq1d 2265 . . . . . . . 8  |-  ( i  =  k  ->  (
( i  x.  P
)  e.  S  <->  ( k  x.  P )  e.  S
) )
27 4sq.6 . . . . . . . 8  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
2826, 27elrab2 2923 . . . . . . 7  |-  ( k  e.  T  <->  ( k  e.  NN  /\  ( k  x.  P )  e.  S ) )
2910, 24, 28sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  T )
30 elex2 2779 . . . . . 6  |-  ( k  e.  T  ->  E. j 
j  e.  T )
3129, 30syl 14 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  E. j  j  e.  T )
3227ssrab3 3270 . . . . . . . 8  |-  T  C_  NN
33 4sq.7 . . . . . . . . 9  |-  M  = inf ( T ,  RR ,  <  )
34 1zzd 9372 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
1  e.  ZZ )
35 nnuz 9656 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
3635rabeqi 2756 . . . . . . . . . . 11  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
3727, 36eqtri 2217 . . . . . . . . . 10  |-  T  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
38 elfznn 10148 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... k )  ->  i  e.  NN )
3938adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  i  e.  NN )
40 prmnn 12305 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
414, 40syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
4241ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  P  e.  NN )
4339, 42nnmulcld 9058 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN )
4443nnnn0d 9321 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN0 )
4514sqlemsdc 12596 . . . . . . . . . . 11  |-  ( ( i  x.  P )  e.  NN0  -> DECID  ( i  x.  P
)  e.  S )
4644, 45syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  -> DECID  ( i  x.  P
)  e.  S )
4734, 37, 29, 46infssuzcldc 10344 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  e.  T )
4833, 47eqeltrid 2283 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  T )
4932, 48sselid 3182 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  NN )
5049nnred 9022 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  RR )
5110nnred 9022 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  RR )
5241nnred 9022 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  RR )
5434, 37, 29, 46infssuzledc 10343 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  <_  k )
5533, 54eqbrtrid 4069 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <_  k )
56 prmz 12306 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
574, 56syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
5857ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  ZZ )
59 elfzm11 10185 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
6018, 58, 59sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
618, 60mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) )
6261simp3d 1013 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  <  P )
6350, 51, 53, 55, 62lelttrd 8170 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <  P )
6431, 63jca 306 . . . 4  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( E. j  j  e.  T  /\  M  <  P ) )
6564ex 115 . . 3  |-  ( (
ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
6665rexlimdvva 2622 . 2  |-  ( ph  ->  ( E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
677, 66mpd 13 1  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   {crab 2479    C_ wss 3157   class class class wbr 4034    |-> cmpt 4095   ` cfv 5259  (class class class)co 5925  infcinf 7058   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    < clt 8080    <_ cle 8081    - cmin 8216   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102    mod cmo 10433   ^cexp 10649   abscabs 11181   Primecprime 12302   ZZ[_i]cgz 12565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-gz 12566
This theorem is referenced by:  4sqlem14  12600  4sqlem17  12603  4sqlem18  12604
  Copyright terms: Public domain W3C validator