ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem13m Unicode version

Theorem 4sqlem13m 12926
Description: Lemma for 4sq 12933. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem13m  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, j    ph, i, n
Allowed substitution hints:    ph( x, y, z, w, j)    P( j)    S( x, y, z, w, j)    T( x, y, z, w, i, n)    M( x, y, z, w, i, j, n)    N( x, y, z, w, i, j)

Proof of Theorem 4sqlem13m
Dummy variables  k  u  m  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sqlem11.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . 3  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . 3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . 3  |-  ( ph  ->  P  e.  Prime )
5 eqid 2229 . . 3  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }
6 eqid 2229 . . 3  |-  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )  =  ( v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } 
|->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem12 12925 . 2  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
8 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  ( 1 ... ( P  - 
1 ) ) )
9 elfznn 10250 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( P  -  1 ) )  ->  k  e.  NN )
108, 9syl 14 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  NN )
11 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
12 abs1 11583 . . . . . . . . . . . 12  |-  ( abs `  1 )  =  1
1312oveq1i 6011 . . . . . . . . . . 11  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
14 sq1 10855 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
1513, 14eqtri 2250 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  1
1615oveq2i 6012 . . . . . . . . 9  |-  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( ( ( abs `  u ) ^ 2 )  +  1 )
17 simplrr 536 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  u  e.  ZZ[_i] )
18 1z 9472 . . . . . . . . . . 11  |-  1  e.  ZZ
19 zgz 12896 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . . . 10  |-  1  e.  ZZ[_i]
2114sqlem4a 12914 . . . . . . . . . 10  |-  ( ( u  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
2217, 20, 21sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  1 ) ^ 2 ) )  e.  S )
2316, 22eqeltrrid 2317 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( ( ( abs `  u ) ^ 2 )  +  1 )  e.  S )
2411, 23eqeltrrd 2307 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  x.  P
)  e.  S )
25 oveq1 6008 . . . . . . . . 9  |-  ( i  =  k  ->  (
i  x.  P )  =  ( k  x.  P ) )
2625eleq1d 2298 . . . . . . . 8  |-  ( i  =  k  ->  (
( i  x.  P
)  e.  S  <->  ( k  x.  P )  e.  S
) )
27 4sq.6 . . . . . . . 8  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
2826, 27elrab2 2962 . . . . . . 7  |-  ( k  e.  T  <->  ( k  e.  NN  /\  ( k  x.  P )  e.  S ) )
2910, 24, 28sylanbrc 417 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  T )
30 elex2 2816 . . . . . 6  |-  ( k  e.  T  ->  E. j 
j  e.  T )
3129, 30syl 14 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  E. j  j  e.  T )
3227ssrab3 3310 . . . . . . . 8  |-  T  C_  NN
33 4sq.7 . . . . . . . . 9  |-  M  = inf ( T ,  RR ,  <  )
34 1zzd 9473 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
1  e.  ZZ )
35 nnuz 9758 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
3635rabeqi 2792 . . . . . . . . . . 11  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
3727, 36eqtri 2250 . . . . . . . . . 10  |-  T  =  { i  e.  (
ZZ>= `  1 )  |  ( i  x.  P
)  e.  S }
38 elfznn 10250 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... k )  ->  i  e.  NN )
3938adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  i  e.  NN )
40 prmnn 12632 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  NN )
414, 40syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
4241ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  P  e.  NN )
4339, 42nnmulcld 9159 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN )
4443nnnn0d 9422 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  ->  (
i  x.  P )  e.  NN0 )
4514sqlemsdc 12923 . . . . . . . . . . 11  |-  ( ( i  x.  P )  e.  NN0  -> DECID  ( i  x.  P
)  e.  S )
4644, 45syl 14 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )  /\  i  e.  ( 1 ... k
) )  -> DECID  ( i  x.  P
)  e.  S )
4734, 37, 29, 46infssuzcldc 10455 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  e.  T )
4833, 47eqeltrid 2316 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  T )
4932, 48sselid 3222 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  NN )
5049nnred 9123 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  e.  RR )
5110nnred 9123 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  e.  RR )
5241nnred 9123 . . . . . . 7  |-  ( ph  ->  P  e.  RR )
5352ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  RR )
5434, 37, 29, 46infssuzledc 10454 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> inf ( T ,  RR ,  <  )  <_  k )
5533, 54eqbrtrid 4118 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <_  k )
56 prmz 12633 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
574, 56syl 14 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
5857ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  P  e.  ZZ )
59 elfzm11 10287 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
6018, 58, 59sylancr 414 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ( 1 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) ) )
618, 60mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  P ) )
6261simp3d 1035 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
k  <  P )
6350, 51, 53, 55, 62lelttrd 8271 . . . . 5  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  ->  M  <  P )
6431, 63jca 306 . . . 4  |-  ( ( ( ph  /\  (
k  e.  ( 1 ... ( P  - 
1 ) )  /\  u  e.  ZZ[_i] ) )  /\  ( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )  -> 
( E. j  j  e.  T  /\  M  <  P ) )
6564ex 115 . . 3  |-  ( (
ph  /\  ( k  e.  ( 1 ... ( P  -  1 ) )  /\  u  e.  ZZ[_i]
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
6665rexlimdvva 2656 . 2  |-  ( ph  ->  ( E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  ->  ( E. j  j  e.  T  /\  M  <  P
) ) )
677, 66mpd 13 1  |-  ( ph  ->  ( E. j  j  e.  T  /\  M  <  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   {crab 2512    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001  infcinf 7150   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    mod cmo 10544   ^cexp 10760   abscabs 11508   Primecprime 12629   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by:  4sqlem14  12927  4sqlem17  12930  4sqlem18  12931
  Copyright terms: Public domain W3C validator