ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mersenne Unicode version

Theorem mersenne 15513
Description: A Mersenne prime is a prime number of the form  2 ^ P  - 
1. This theorem shows that the  P in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )

Proof of Theorem mersenne
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ZZ )
2 2nn0 9319 . . . . . . 7  |-  2  e.  NN0
32numexp1 12790 . . . . . 6  |-  ( 2 ^ 1 )  =  2
4 df-2 9102 . . . . . 6  |-  2  =  ( 1  +  1 )
53, 4eqtri 2227 . . . . 5  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
6 prmuz2 12497 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= `  2 )
)
76adantl 277 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= ` 
2 ) )
8 eluz2gt1 9730 . . . . . . 7  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2 ^ P
)  -  1 ) )
97, 8syl 14 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  ( ( 2 ^ P )  -  1 ) )
10 1red 8094 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  RR )
11 2re 9113 . . . . . . . . 9  |-  2  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  e.  RR )
13 2ap0 9136 . . . . . . . . 9  |-  2 #  0
1413a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2 #  0 )
1512, 14, 1reexpclzapd 10850 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  RR )
1610, 10, 15ltaddsubd 8625 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 1  +  1 )  <  (
2 ^ P )  <->  1  <  ( ( 2 ^ P )  -  1 ) ) )
179, 16mpbird 167 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  +  1 )  <  ( 2 ^ P ) )
185, 17eqbrtrid 4082 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ 1 )  <  ( 2 ^ P ) )
19 1zzd 9406 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  ZZ )
20 1lt2 9213 . . . . . 6  |-  1  <  2
2120a1i 9 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  2 )
2212, 19, 1, 21ltexp2d 15458 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  <  P  <->  ( 2 ^ 1 )  <  ( 2 ^ P ) ) )
2318, 22mpbird 167 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  P )
24 eluz2b1 9729 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
251, 23, 24sylanbrc 417 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
26 simpllr 534 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  Prime )
27 prmnn 12476 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2826, 27syl 14 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  NN )
2928nncnd 9057 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  CC )
30 2nn 9205 . . . . . . . . . . 11  |-  2  e.  NN
31 elfzuz 10150 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ( ZZ>= `  2 )
)
3231ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ( ZZ>= `  2 )
)
33 eluz2nn 9694 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
3432, 33syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN )
3534nnnn0d 9355 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN0 )
36 nnexpcl 10704 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
3730, 35, 36sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  NN )
3837nnzd 9501 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  ZZ )
39 peano2zm 9417 . . . . . . . . 9  |-  ( ( 2 ^ k )  e.  ZZ  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4038, 39syl 14 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4140zred 9502 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  RR )
4241recnd 8108 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  CC )
43 0red 8080 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  e.  RR )
44 1red 8094 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  RR )
45 0lt1 8206 . . . . . . . . 9  |-  0  <  1
4645a1i 9 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  1 )
47 eluz2gt1 9730 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  2
)  ->  1  <  k )
4832, 47syl 14 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  k )
4911a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  RR )
50 1zzd 9406 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  ZZ )
51 elfzelz 10154 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ZZ )
5251ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ZZ )
5320a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  2 )
5449, 50, 52, 53ltexp2d 15458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  <  k  <->  ( 2 ^ 1 )  < 
( 2 ^ k
) ) )
5548, 54mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ 1 )  <  ( 2 ^ k ) )
565, 55eqbrtrrid 4083 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  +  1 )  <  ( 2 ^ k ) )
5737nnred 9056 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  RR )
5844, 44, 57ltaddsubd 8625 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  +  1 )  <  ( 2 ^ k )  <->  1  <  ( ( 2 ^ k
)  -  1 ) ) )
5956, 58mpbid 147 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( 2 ^ k )  -  1 ) )
6043, 44, 41, 46, 59lttrd 8205 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  ( ( 2 ^ k )  -  1 ) )
6141, 60gt0ap0d 8709 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 ) #  0 )
6229, 42, 61divcanap2d 8872 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  =  ( ( 2 ^ P )  - 
1 ) )
6362, 26eqeltrd 2283 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  e.  Prime )
64 elnnz 9389 . . . . . . 7  |-  ( ( ( 2 ^ k
)  -  1 )  e.  NN  <->  ( (
( 2 ^ k
)  -  1 )  e.  ZZ  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )
6540, 60, 64sylanbrc 417 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  NN )
66 eluz2b2 9731 . . . . . 6  |-  ( ( ( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
)  <->  ( ( ( 2 ^ k )  -  1 )  e.  NN  /\  1  < 
( ( 2 ^ k )  -  1 ) ) )
6765, 59, 66sylanbrc 417 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
) )
6837nncnd 9057 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  CC )
69 ax-1cn 8025 . . . . . . . . . . 11  |-  1  e.  CC
70 subap0 8723 . . . . . . . . . . 11  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ k )  - 
1 ) #  0  <->  (
2 ^ k ) #  1 ) )
7168, 69, 70sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 ) #  0  <->  ( 2 ^ k ) #  1 ) )
7261, 71mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k ) #  1 )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  ||  P )
74 eluz2nn 9694 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
7525, 74syl 14 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN )
7675ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  NN )
77 nndivdvds 12151 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  k  e.  NN )  ->  ( k  ||  P  <->  ( P  /  k )  e.  NN ) )
7876, 34, 77syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  ||  P  <->  ( P  /  k )  e.  NN ) )
7973, 78mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e.  NN )
8079nnnn0d 9355 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e. 
NN0 )
8168, 72, 80geoserap 11862 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( 1  -  (
( 2 ^ k
) ^ ( P  /  k ) ) )  /  ( 1  -  ( 2 ^ k ) ) ) )
8215ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  RR )
8382recnd 8108 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  CC )
84 negsubdi2 8338 . . . . . . . . . . 11  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ P )  - 
1 )  =  ( 1  -  ( 2 ^ P ) ) )
8583, 69, 84sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( 2 ^ P
) ) )
8676nncnd 9057 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  CC )
8734nncnd 9057 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  CC )
8834nnap0d 9089 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k #  0 )
8986, 87, 88divcanap2d 8872 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  x.  ( P  /  k ) )  =  P )
9089oveq2d 5967 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( 2 ^ P ) )
9149recnd 8108 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  CC )
9291, 80, 35expmuld 10828 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
9390, 92eqtr3d 2241 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
9493oveq2d 5967 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  -  ( 2 ^ P ) )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
9585, 94eqtrd 2239 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
96 negsubdi2 8338 . . . . . . . . . 10  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ k )  - 
1 )  =  ( 1  -  ( 2 ^ k ) ) )
9768, 69, 96sylancl 413 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ k
)  -  1 )  =  ( 1  -  ( 2 ^ k
) ) )
9895, 97oveq12d 5969 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( 1  -  ( ( 2 ^ k ) ^ ( P  / 
k ) ) )  /  ( 1  -  ( 2 ^ k
) ) ) )
9929, 42, 61div2negapd 8885 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )
10081, 98, 993eqtr2d 2245 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )
101 0zd 9391 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  e.  ZZ )
10279nnzd 9501 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e.  ZZ )
103102, 50zsubcld 9507 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( P  /  k
)  -  1 )  e.  ZZ )
104101, 103fzfigd 10583 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
0 ... ( ( P  /  k )  - 
1 ) )  e. 
Fin )
105 elfznn0 10243 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( ( P  / 
k )  -  1 ) )  ->  n  e.  NN0 )
106 zexpcl 10706 . . . . . . . . 9  |-  ( ( ( 2 ^ k
)  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( 2 ^ k ) ^ n
)  e.  ZZ )
10738, 105, 106syl2an 289 . . . . . . . 8  |-  ( ( ( ( ( P  e.  ZZ  /\  (
( 2 ^ P
)  -  1 )  e.  Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  /\  n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) )  ->  (
( 2 ^ k
) ^ n )  e.  ZZ )
108104, 107fsumzcl 11757 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  e.  ZZ )
109100, 108eqeltrrd 2284 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ZZ )
11042mullidd 8097 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  =  ( ( 2 ^ k )  - 
1 ) )
111 2z 9407 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
112 elfzm11 10220 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
113111, 1, 112sylancr 414 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
114113biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  ( k  e.  ZZ  /\  2  <_ 
k  /\  k  <  P ) )
115114simp3d 1014 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  k  <  P
)
116115adantr 276 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  <  P )
1171ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  ZZ )
11849, 52, 117, 53ltexp2d 15458 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  <  P  <->  ( 2 ^ k )  < 
( 2 ^ P
) ) )
119116, 118mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  <  ( 2 ^ P ) )
12057, 82, 44, 119ltsub1dd 8637 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  <  ( ( 2 ^ P )  - 
1 ) )
121110, 120eqbrtrd 4069 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 ) )
12228nnred 9056 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  RR )
123 ltmuldiv 8954 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( 2 ^ P )  -  1 )  e.  RR  /\  ( ( ( 2 ^ k )  - 
1 )  e.  RR  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )  ->  ( (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
12444, 122, 41, 60, 123syl112anc 1254 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  x.  (
( 2 ^ k
)  -  1 ) )  <  ( ( 2 ^ P )  -  1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
125121, 124mpbid 147 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) )
126 eluz2b1 9729 . . . . . 6  |-  ( ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) )  e.  ZZ  /\  1  < 
( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) ) )
127109, 125, 126sylanbrc 417 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )
128 nprm 12489 . . . . 5  |-  ( ( ( ( 2 ^ k )  -  1 )  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
12967, 127, 128syl2anc 411 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
13063, 129pm2.65da 663 . . 3  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  -.  k  ||  P )
131130ralrimiva 2580 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
)
132 isprm3 12484 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
) )
13325, 131, 132sylanbrc 417 1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   class class class wbr 4047   ` cfv 5276  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    <_ cle 8115    - cmin 8250   -ucneg 8251   # cap 8661    / cdiv 8752   NNcn 9043   2c2 9094   NN0cn0 9302   ZZcz 9379   ZZ>=cuz 9655   ...cfz 10137   ^cexp 10690   sum_csu 11708    || cdvds 12142   Primecprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-pre-suploc 8053  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-disj 4024  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-ico 10023  df-icc 10024  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-bc 10900  df-ihash 10928  df-shft 11170  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ef 12003  df-e 12004  df-dvds 12143  df-prm 12474  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-cncf 15087  df-limced 15172  df-dvap 15173  df-relog 15374  df-rpcxp 15375
This theorem is referenced by:  perfect1  15514  perfect  15517
  Copyright terms: Public domain W3C validator