ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mersenne Unicode version

Theorem mersenne 15636
Description: A Mersenne prime is a prime number of the form  2 ^ P  - 
1. This theorem shows that the  P in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )

Proof of Theorem mersenne
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ZZ )
2 2nn0 9354 . . . . . . 7  |-  2  e.  NN0
32numexp1 12912 . . . . . 6  |-  ( 2 ^ 1 )  =  2
4 df-2 9137 . . . . . 6  |-  2  =  ( 1  +  1 )
53, 4eqtri 2230 . . . . 5  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
6 prmuz2 12619 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= `  2 )
)
76adantl 277 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 2 ^ P )  -  1 )  e.  ( ZZ>= ` 
2 ) )
8 eluz2gt1 9765 . . . . . . 7  |-  ( ( ( 2 ^ P
)  -  1 )  e.  ( ZZ>= `  2
)  ->  1  <  ( ( 2 ^ P
)  -  1 ) )
97, 8syl 14 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  ( ( 2 ^ P )  -  1 ) )
10 1red 8129 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  RR )
11 2re 9148 . . . . . . . . 9  |-  2  e.  RR
1211a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2  e.  RR )
13 2ap0 9171 . . . . . . . . 9  |-  2 #  0
1413a1i 9 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  2 #  0 )
1512, 14, 1reexpclzapd 10887 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ P
)  e.  RR )
1610, 10, 15ltaddsubd 8660 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( ( 1  +  1 )  <  (
2 ^ P )  <->  1  <  ( ( 2 ^ P )  -  1 ) ) )
179, 16mpbird 167 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  +  1 )  <  ( 2 ^ P ) )
185, 17eqbrtrid 4097 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 2 ^ 1 )  <  ( 2 ^ P ) )
19 1zzd 9441 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  e.  ZZ )
20 1lt2 9248 . . . . . 6  |-  1  <  2
2120a1i 9 . . . . 5  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  2 )
2212, 19, 1, 21ltexp2d 15581 . . . 4  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( 1  <  P  <->  ( 2 ^ 1 )  <  ( 2 ^ P ) ) )
2318, 22mpbird 167 . . 3  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  1  <  P )
24 eluz2b1 9764 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  ZZ  /\  1  < 
P ) )
251, 23, 24sylanbrc 417 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  ( ZZ>= ` 
2 ) )
26 simpllr 534 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  Prime )
27 prmnn 12598 . . . . . . . 8  |-  ( ( ( 2 ^ P
)  -  1 )  e.  Prime  ->  ( ( 2 ^ P )  -  1 )  e.  NN )
2826, 27syl 14 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  NN )
2928nncnd 9092 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  CC )
30 2nn 9240 . . . . . . . . . . 11  |-  2  e.  NN
31 elfzuz 10185 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ( ZZ>= `  2 )
)
3231ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ( ZZ>= `  2 )
)
33 eluz2nn 9729 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
3432, 33syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN )
3534nnnn0d 9390 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  NN0 )
36 nnexpcl 10741 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
3730, 35, 36sylancr 414 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  NN )
3837nnzd 9536 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  ZZ )
39 peano2zm 9452 . . . . . . . . 9  |-  ( ( 2 ^ k )  e.  ZZ  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4038, 39syl 14 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ZZ )
4140zred 9537 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  RR )
4241recnd 8143 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  CC )
43 0red 8115 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  e.  RR )
44 1red 8129 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  RR )
45 0lt1 8241 . . . . . . . . 9  |-  0  <  1
4645a1i 9 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  1 )
47 eluz2gt1 9765 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  2
)  ->  1  <  k )
4832, 47syl 14 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  k )
4911a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  RR )
50 1zzd 9441 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  e.  ZZ )
51 elfzelz 10189 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( P  -  1 ) )  ->  k  e.  ZZ )
5251ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  ZZ )
5320a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  2 )
5449, 50, 52, 53ltexp2d 15581 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  <  k  <->  ( 2 ^ 1 )  < 
( 2 ^ k
) ) )
5548, 54mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ 1 )  <  ( 2 ^ k ) )
565, 55eqbrtrrid 4098 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  +  1 )  <  ( 2 ^ k ) )
5737nnred 9091 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  RR )
5844, 44, 57ltaddsubd 8660 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  +  1 )  <  ( 2 ^ k )  <->  1  <  ( ( 2 ^ k
)  -  1 ) ) )
5956, 58mpbid 147 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( 2 ^ k )  -  1 ) )
6043, 44, 41, 46, 59lttrd 8240 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  <  ( ( 2 ^ k )  -  1 ) )
6141, 60gt0ap0d 8744 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 ) #  0 )
6229, 42, 61divcanap2d 8907 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  =  ( ( 2 ^ P )  - 
1 ) )
6362, 26eqeltrd 2286 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 )  x.  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )  e.  Prime )
64 elnnz 9424 . . . . . . 7  |-  ( ( ( 2 ^ k
)  -  1 )  e.  NN  <->  ( (
( 2 ^ k
)  -  1 )  e.  ZZ  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )
6540, 60, 64sylanbrc 417 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  NN )
66 eluz2b2 9766 . . . . . 6  |-  ( ( ( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
)  <->  ( ( ( 2 ^ k )  -  1 )  e.  NN  /\  1  < 
( ( 2 ^ k )  -  1 ) ) )
6765, 59, 66sylanbrc 417 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  e.  ( ZZ>= `  2
) )
6837nncnd 9092 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  e.  CC )
69 ax-1cn 8060 . . . . . . . . . . 11  |-  1  e.  CC
70 subap0 8758 . . . . . . . . . . 11  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 ^ k )  - 
1 ) #  0  <->  (
2 ^ k ) #  1 ) )
7168, 69, 70sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ k )  -  1 ) #  0  <->  ( 2 ^ k ) #  1 ) )
7261, 71mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k ) #  1 )
73 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  ||  P )
74 eluz2nn 9729 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
7525, 74syl 14 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  NN )
7675ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  NN )
77 nndivdvds 12273 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  k  e.  NN )  ->  ( k  ||  P  <->  ( P  /  k )  e.  NN ) )
7876, 34, 77syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  ||  P  <->  ( P  /  k )  e.  NN ) )
7973, 78mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e.  NN )
8079nnnn0d 9390 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e. 
NN0 )
8168, 72, 80geoserap 11984 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( 1  -  (
( 2 ^ k
) ^ ( P  /  k ) ) )  /  ( 1  -  ( 2 ^ k ) ) ) )
8215ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  RR )
8382recnd 8143 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  e.  CC )
84 negsubdi2 8373 . . . . . . . . . . 11  |-  ( ( ( 2 ^ P
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ P )  - 
1 )  =  ( 1  -  ( 2 ^ P ) ) )
8583, 69, 84sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( 2 ^ P
) ) )
8676nncnd 9092 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  CC )
8734nncnd 9092 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  e.  CC )
8834nnap0d 9124 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k #  0 )
8986, 87, 88divcanap2d 8907 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  x.  ( P  /  k ) )  =  P )
9089oveq2d 5990 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( 2 ^ P ) )
9149recnd 8143 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  2  e.  CC )
9291, 80, 35expmuld 10865 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ ( k  x.  ( P  / 
k ) ) )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
9390, 92eqtr3d 2244 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ P )  =  ( ( 2 ^ k ) ^
( P  /  k
) ) )
9493oveq2d 5990 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  -  ( 2 ^ P ) )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
9585, 94eqtrd 2242 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ P
)  -  1 )  =  ( 1  -  ( ( 2 ^ k ) ^ ( P  /  k ) ) ) )
96 negsubdi2 8373 . . . . . . . . . 10  |-  ( ( ( 2 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( ( 2 ^ k )  - 
1 )  =  ( 1  -  ( 2 ^ k ) ) )
9768, 69, 96sylancl 413 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -u (
( 2 ^ k
)  -  1 )  =  ( 1  -  ( 2 ^ k
) ) )
9895, 97oveq12d 5992 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( 1  -  ( ( 2 ^ k ) ^ ( P  / 
k ) ) )  /  ( 1  -  ( 2 ^ k
) ) ) )
9929, 42, 61div2negapd 8920 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( -u ( ( 2 ^ P )  -  1 )  /  -u (
( 2 ^ k
)  -  1 ) )  =  ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) ) )
10081, 98, 993eqtr2d 2248 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  =  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )
101 0zd 9426 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  0  e.  ZZ )
10279nnzd 9536 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  ( P  /  k )  e.  ZZ )
103102, 50zsubcld 9542 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( P  /  k
)  -  1 )  e.  ZZ )
104101, 103fzfigd 10620 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
0 ... ( ( P  /  k )  - 
1 ) )  e. 
Fin )
105 elfznn0 10278 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( ( P  / 
k )  -  1 ) )  ->  n  e.  NN0 )
106 zexpcl 10743 . . . . . . . . 9  |-  ( ( ( 2 ^ k
)  e.  ZZ  /\  n  e.  NN0 )  -> 
( ( 2 ^ k ) ^ n
)  e.  ZZ )
10738, 105, 106syl2an 289 . . . . . . . 8  |-  ( ( ( ( ( P  e.  ZZ  /\  (
( 2 ^ P
)  -  1 )  e.  Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  /\  n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) )  ->  (
( 2 ^ k
) ^ n )  e.  ZZ )
108104, 107fsumzcl 11879 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  sum_ n  e.  ( 0 ... (
( P  /  k
)  -  1 ) ) ( ( 2 ^ k ) ^
n )  e.  ZZ )
109100, 108eqeltrrd 2287 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ZZ )
11042mullidd 8132 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  =  ( ( 2 ^ k )  - 
1 ) )
111 2z 9442 . . . . . . . . . . . . . 14  |-  2  e.  ZZ
112 elfzm11 10255 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
113111, 1, 112sylancr 414 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  ( k  e.  ( 2 ... ( P  -  1 ) )  <-> 
( k  e.  ZZ  /\  2  <_  k  /\  k  <  P ) ) )
114113biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  ( k  e.  ZZ  /\  2  <_ 
k  /\  k  <  P ) )
115114simp3d 1016 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  k  <  P
)
116115adantr 276 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  k  <  P )
1171ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  P  e.  ZZ )
11849, 52, 117, 53ltexp2d 15581 . . . . . . . . . 10  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
k  <  P  <->  ( 2 ^ k )  < 
( 2 ^ P
) ) )
119116, 118mpbid 147 . . . . . . . . 9  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
2 ^ k )  <  ( 2 ^ P ) )
12057, 82, 44, 119ltsub1dd 8672 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ k
)  -  1 )  <  ( ( 2 ^ P )  - 
1 ) )
121110, 120eqbrtrd 4084 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 ) )
12228nnred 9091 . . . . . . . 8  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 2 ^ P
)  -  1 )  e.  RR )
123 ltmuldiv 8989 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( ( 2 ^ P )  -  1 )  e.  RR  /\  ( ( ( 2 ^ k )  - 
1 )  e.  RR  /\  0  <  ( ( 2 ^ k )  -  1 ) ) )  ->  ( (
1  x.  ( ( 2 ^ k )  -  1 ) )  <  ( ( 2 ^ P )  - 
1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
12444, 122, 41, 60, 123syl112anc 1256 . . . . . . 7  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( 1  x.  (
( 2 ^ k
)  -  1 ) )  <  ( ( 2 ^ P )  -  1 )  <->  1  <  ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) ) )
125121, 124mpbid 147 . . . . . 6  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  1  <  ( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) )
126 eluz2b1 9764 . . . . . 6  |-  ( ( ( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( ( ( 2 ^ P
)  -  1 )  /  ( ( 2 ^ k )  - 
1 ) )  e.  ZZ  /\  1  < 
( ( ( 2 ^ P )  - 
1 )  /  (
( 2 ^ k
)  -  1 ) ) ) )
127109, 125, 126sylanbrc 417 . . . . 5  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )
128 nprm 12611 . . . . 5  |-  ( ( ( ( 2 ^ k )  -  1 )  e.  ( ZZ>= ` 
2 )  /\  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) )  e.  ( ZZ>= `  2
) )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
12967, 127, 128syl2anc 411 . . . 4  |-  ( ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e. 
Prime )  /\  k  e.  ( 2 ... ( P  -  1 ) ) )  /\  k  ||  P )  ->  -.  ( ( ( 2 ^ k )  - 
1 )  x.  (
( ( 2 ^ P )  -  1 )  /  ( ( 2 ^ k )  -  1 ) ) )  e.  Prime )
13063, 129pm2.65da 665 . . 3  |-  ( ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  /\  k  e.  (
2 ... ( P  - 
1 ) ) )  ->  -.  k  ||  P )
131130ralrimiva 2583 . 2  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
)
132 isprm3 12606 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. k  e.  ( 2 ... ( P  -  1 ) )  -.  k  ||  P
) )
13325, 131, 132sylanbrc 417 1  |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime )  ->  P  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   A.wral 2488   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149    <_ cle 8150    - cmin 8285   -ucneg 8286   # cap 8696    / cdiv 8787   NNcn 9078   2c2 9129   NN0cn0 9337   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172   ^cexp 10727   sum_csu 11830    || cdvds 12264   Primecprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-pre-suploc 8088  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-ico 10058  df-icc 10059  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-bc 10937  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ef 12125  df-e 12126  df-dvds 12265  df-prm 12596  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210  df-limced 15295  df-dvap 15296  df-relog 15497  df-rpcxp 15498
This theorem is referenced by:  perfect1  15637  perfect  15640
  Copyright terms: Public domain W3C validator