ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d Unicode version

Theorem nnge1d 9081
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
nnge1d  |-  ( ph  ->  1  <_  A )

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnge1 9061 . 2  |-  ( A  e.  NN  ->  1  <_  A )
31, 2syl 14 1  |-  ( ph  ->  1  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   class class class wbr 4045   1c1 7928    <_ cle 8110   NNcn 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-iota 5233  df-fv 5280  df-ov 5949  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-inn 9039
This theorem is referenced by:  exbtwnzlemstep  10392  addmodlteq  10545  bernneq3  10809  facwordi  10887  faclbnd  10888  faclbnd3  10890  facavg  10893  bcval5  10910  1elfz0hash  10953  seq3coll  10989  fsumcl2lem  11742  eftlub  12034  eflegeo  12045  eirraplem  12121  isprm5lem  12496  divdenle  12552  eulerthlemrprm  12584  eulerthlema  12585  infpnlem2  12716  4sqlem11  12757  4sqlem12  12758  2expltfac  12795  nninfdclemlt  12855  psrbaglesuppg  14467  logbgcd1irraplemexp  15473  perfectlem2  15505  lgsdir  15545  lgsdilem2  15546  lgseisenlem1  15580  2sqlem8  15633
  Copyright terms: Public domain W3C validator