ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d Unicode version

Theorem nnge1d 8900
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
nnge1d  |-  ( ph  ->  1  <_  A )

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnge1 8880 . 2  |-  ( A  e.  NN  ->  1  <_  A )
31, 2syl 14 1  |-  ( ph  ->  1  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   class class class wbr 3982   1c1 7754    <_ cle 7934   NNcn 8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-inn 8858
This theorem is referenced by:  exbtwnzlemstep  10183  addmodlteq  10333  bernneq3  10577  facwordi  10653  faclbnd  10654  faclbnd3  10656  facavg  10659  bcval5  10676  1elfz0hash  10719  seq3coll  10755  fsumcl2lem  11339  eftlub  11631  eflegeo  11642  eirraplem  11717  isprm5lem  12073  divdenle  12129  eulerthlemrprm  12161  eulerthlema  12162  infpnlem2  12290  nninfdclemlt  12384  logbgcd1irraplemexp  13526  lgsdir  13576  lgsdilem2  13577  2sqlem8  13599
  Copyright terms: Public domain W3C validator