| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1d | Unicode version | ||
| Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| Ref | Expression |
|---|---|
| nnge1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnge1 9094 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 |
| This theorem is referenced by: exbtwnzlemstep 10427 addmodlteq 10580 bernneq3 10844 facwordi 10922 faclbnd 10923 faclbnd3 10925 facavg 10928 bcval5 10945 1elfz0hash 10988 seq3coll 11024 wrdind 11213 wrd2ind 11214 fsumcl2lem 11824 eftlub 12116 eflegeo 12127 eirraplem 12203 isprm5lem 12578 divdenle 12634 eulerthlemrprm 12666 eulerthlema 12667 infpnlem2 12798 4sqlem11 12839 4sqlem12 12840 2expltfac 12877 nninfdclemlt 12937 psrbaglesuppg 14549 logbgcd1irraplemexp 15555 perfectlem2 15587 lgsdir 15627 lgsdilem2 15628 lgseisenlem1 15662 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |