ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmeq0 Unicode version

Theorem lcmeq0 12088
Description: The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmeq0  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  <->  ( M  =  0  \/  N  =  0 ) ) )

Proof of Theorem lcmeq0
StepHypRef Expression
1 lcmmndc 12079 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
2 lcmn0cl 12085 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
32nnne0d 8981 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  =/=  0 )
43neneqd 2380 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M lcm  N )  =  0 )
54ex 115 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  -.  ( M lcm  N )  =  0 ) )
6 condc 854 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( -.  ( M  =  0  \/  N  =  0 )  ->  -.  ( M lcm  N )  =  0 )  ->  ( ( M lcm 
N )  =  0  ->  ( M  =  0  \/  N  =  0 ) ) ) )
71, 5, 6sylc 62 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  -> 
( M  =  0  \/  N  =  0 ) ) )
8 oveq1 5897 . . . . . 6  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
9 0z 9281 . . . . . . . 8  |-  0  e.  ZZ
10 lcmcom 12081 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
119, 10mpan2 425 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
12 lcm0val 12082 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
1311, 12eqtr3d 2223 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
148, 13sylan9eqr 2243 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1514adantll 476 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  0 )
16 oveq2 5898 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
17 lcm0val 12082 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
1816, 17sylan9eqr 2243 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
1918adantlr 477 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  0 )
2015, 19jaodan 798 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  0 )
2120ex 115 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  ->  ( M lcm  N )  =  0 ) )
227, 21impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  <->  ( M  =  0  \/  N  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1363    e. wcel 2159  (class class class)co 5890   0cc0 7828   ZZcz 9270   lcm clcm 12077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-frec 6409  df-sup 7000  df-inf 7001  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-n0 9194  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-fz 10026  df-fzo 10160  df-fl 10287  df-mod 10340  df-seqfrec 10463  df-exp 10537  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-dvds 11812  df-lcm 12078
This theorem is referenced by:  lcmass  12102
  Copyright terms: Public domain W3C validator