ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmeq0 Unicode version

Theorem lcmeq0 11952
Description: The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmeq0  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  <->  ( M  =  0  \/  N  =  0 ) ) )

Proof of Theorem lcmeq0
StepHypRef Expression
1 lcmmndc 11943 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  \/  N  =  0 ) )
2 lcmn0cl 11949 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  NN )
32nnne0d 8879 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  =/=  0 )
43neneqd 2348 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  ( M lcm  N )  =  0 )
54ex 114 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  \/  N  =  0 )  ->  -.  ( M lcm  N )  =  0 ) )
6 condc 839 . . 3  |-  (DECID  ( M  =  0  \/  N  =  0 )  -> 
( ( -.  ( M  =  0  \/  N  =  0 )  ->  -.  ( M lcm  N )  =  0 )  ->  ( ( M lcm 
N )  =  0  ->  ( M  =  0  \/  N  =  0 ) ) ) )
71, 5, 6sylc 62 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  -> 
( M  =  0  \/  N  =  0 ) ) )
8 oveq1 5832 . . . . . 6  |-  ( M  =  0  ->  ( M lcm  N )  =  ( 0 lcm  N ) )
9 0z 9179 . . . . . . . 8  |-  0  e.  ZZ
10 lcmcom 11945 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N lcm  0 )  =  ( 0 lcm  N
) )
119, 10mpan2 422 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  ( 0 lcm  N ) )
12 lcm0val 11946 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N lcm  0 )  =  0 )
1311, 12eqtr3d 2192 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0 lcm  N )  =  0 )
148, 13sylan9eqr 2212 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  =  0 )  ->  ( M lcm  N
)  =  0 )
1514adantll 468 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0 )  ->  ( M lcm  N )  =  0 )
16 oveq2 5833 . . . . . 6  |-  ( N  =  0  ->  ( M lcm  N )  =  ( M lcm  0 ) )
17 lcm0val 11946 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M lcm  0 )  =  0 )
1816, 17sylan9eqr 2212 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  =  0 )  ->  ( M lcm  N
)  =  0 )
1918adantlr 469 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  ( M lcm  N )  =  0 )
2015, 19jaodan 787 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  \/  N  =  0 ) )  -> 
( M lcm  N )  =  0 )
2120ex 114 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  \/  N  =  0 )  ->  ( M lcm  N )  =  0 ) )
227, 21impbid 128 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M lcm  N
)  =  0  <->  ( M  =  0  \/  N  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128  (class class class)co 5825   0cc0 7733   ZZcz 9168   lcm clcm 11941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-isom 5180  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-sup 6929  df-inf 6930  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-fl 10173  df-mod 10226  df-seqfrec 10349  df-exp 10423  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-dvds 11688  df-lcm 11942
This theorem is referenced by:  lcmass  11966
  Copyright terms: Public domain W3C validator