Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lcmcl | Unicode version |
Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
lcmcl | lcm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmcom 12029 | . . . . . 6 lcm lcm | |
2 | 1 | adantr 276 | . . . . 5 lcm lcm |
3 | oveq2 5873 | . . . . . . 7 lcm lcm | |
4 | lcm0val 12030 | . . . . . . 7 lcm | |
5 | 3, 4 | sylan9eqr 2230 | . . . . . 6 lcm |
6 | 5 | adantll 476 | . . . . 5 lcm |
7 | 2, 6 | eqtrd 2208 | . . . 4 lcm |
8 | oveq2 5873 | . . . . . 6 lcm lcm | |
9 | lcm0val 12030 | . . . . . 6 lcm | |
10 | 8, 9 | sylan9eqr 2230 | . . . . 5 lcm |
11 | 10 | adantlr 477 | . . . 4 lcm |
12 | 7, 11 | jaodan 797 | . . 3 lcm |
13 | 0nn0 9162 | . . 3 | |
14 | 12, 13 | eqeltrdi 2266 | . 2 lcm |
15 | lcmn0cl 12033 | . . 3 lcm | |
16 | 15 | nnnn0d 9200 | . 2 lcm |
17 | lcmmndc 12027 | . . 3 DECID | |
18 | exmiddc 836 | . . 3 DECID | |
19 | 17, 18 | syl 14 | . 2 |
20 | 14, 16, 19 | mpjaodan 798 | 1 lcm |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wo 708 DECID wdc 834 wceq 1353 wcel 2146 (class class class)co 5865 cc0 7786 cn0 9147 cz 9224 lcm clcm 12025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fzo 10111 df-fl 10238 df-mod 10291 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-dvds 11761 df-lcm 12026 |
This theorem is referenced by: gcddvdslcm 12038 lcmneg 12039 lcmdvds 12044 lcmid 12045 lcm1 12046 lcmgcdeq 12048 lcmdvdsb 12049 lcmass 12050 3lcm2e6woprm 12051 6lcm4e12 12052 3lcm2e6 12125 |
Copyright terms: Public domain | W3C validator |