ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqabs Unicode version

Theorem modqabs 10292
Description: Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
Hypotheses
Ref Expression
modqabs.a  |-  ( ph  ->  A  e.  QQ )
modqabs.b  |-  ( ph  ->  B  e.  QQ )
modqabs.bgt0  |-  ( ph  ->  0  <  B )
modqabs.c  |-  ( ph  ->  C  e.  QQ )
modqabs.bc  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
modqabs  |-  ( ph  ->  ( ( A  mod  B )  mod  C )  =  ( A  mod  B ) )

Proof of Theorem modqabs
StepHypRef Expression
1 modqabs.a . . 3  |-  ( ph  ->  A  e.  QQ )
2 modqabs.b . . 3  |-  ( ph  ->  B  e.  QQ )
3 modqabs.bgt0 . . 3  |-  ( ph  ->  0  <  B )
41, 2, 3modqcld 10263 . 2  |-  ( ph  ->  ( A  mod  B
)  e.  QQ )
5 modqabs.c . 2  |-  ( ph  ->  C  e.  QQ )
6 modqge0 10267 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  0  <_  ( A  mod  B
) )
71, 2, 3, 6syl3anc 1228 . 2  |-  ( ph  ->  0  <_  ( A  mod  B ) )
8 qre 9563 . . . 4  |-  ( ( A  mod  B )  e.  QQ  ->  ( A  mod  B )  e.  RR )
94, 8syl 14 . . 3  |-  ( ph  ->  ( A  mod  B
)  e.  RR )
10 qre 9563 . . . 4  |-  ( B  e.  QQ  ->  B  e.  RR )
112, 10syl 14 . . 3  |-  ( ph  ->  B  e.  RR )
12 qre 9563 . . . 4  |-  ( C  e.  QQ  ->  C  e.  RR )
135, 12syl 14 . . 3  |-  ( ph  ->  C  e.  RR )
14 modqlt 10268 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  < 
B )
151, 2, 3, 14syl3anc 1228 . . 3  |-  ( ph  ->  ( A  mod  B
)  <  B )
16 modqabs.bc . . 3  |-  ( ph  ->  B  <_  C )
179, 11, 13, 15, 16ltletrd 8321 . 2  |-  ( ph  ->  ( A  mod  B
)  <  C )
18 modqid 10284 . 2  |-  ( ( ( ( A  mod  B )  e.  QQ  /\  C  e.  QQ )  /\  ( 0  <_  ( A  mod  B )  /\  ( A  mod  B )  <  C ) )  ->  ( ( A  mod  B )  mod 
C )  =  ( A  mod  B ) )
194, 5, 7, 17, 18syl22anc 1229 1  |-  ( ph  ->  ( ( A  mod  B )  mod  C )  =  ( A  mod  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    < clt 7933    <_ cle 7934   QQcq 9557    mod cmo 10257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258
This theorem is referenced by:  modqabs2  10293
  Copyright terms: Public domain W3C validator