Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modqabs | GIF version |
Description: Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
Ref | Expression |
---|---|
modqabs.a | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
modqabs.b | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
modqabs.bgt0 | ⊢ (𝜑 → 0 < 𝐵) |
modqabs.c | ⊢ (𝜑 → 𝐶 ∈ ℚ) |
modqabs.bc | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
modqabs | ⊢ (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqabs.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | modqabs.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
3 | modqabs.bgt0 | . . 3 ⊢ (𝜑 → 0 < 𝐵) | |
4 | 1, 2, 3 | modqcld 10254 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℚ) |
5 | modqabs.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℚ) | |
6 | modqge0 10258 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵)) | |
7 | 1, 2, 3, 6 | syl3anc 1227 | . 2 ⊢ (𝜑 → 0 ≤ (𝐴 mod 𝐵)) |
8 | qre 9555 | . . . 4 ⊢ ((𝐴 mod 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ∈ ℝ) | |
9 | 4, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
10 | qre 9555 | . . . 4 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
11 | 2, 10 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
12 | qre 9555 | . . . 4 ⊢ (𝐶 ∈ ℚ → 𝐶 ∈ ℝ) | |
13 | 5, 12 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
14 | modqlt 10259 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵) | |
15 | 1, 2, 3, 14 | syl3anc 1227 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐵) < 𝐵) |
16 | modqabs.bc | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
17 | 9, 11, 13, 15, 16 | ltletrd 8313 | . 2 ⊢ (𝜑 → (𝐴 mod 𝐵) < 𝐶) |
18 | modqid 10275 | . 2 ⊢ ((((𝐴 mod 𝐵) ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (0 ≤ (𝐴 mod 𝐵) ∧ (𝐴 mod 𝐵) < 𝐶)) → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) | |
19 | 4, 5, 7, 17, 18 | syl22anc 1228 | 1 ⊢ (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 class class class wbr 3977 (class class class)co 5837 ℝcr 7744 0cc0 7745 < clt 7925 ≤ cle 7926 ℚcq 9549 mod cmo 10248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-n0 9107 df-z 9184 df-q 9550 df-rp 9582 df-fl 10196 df-mod 10249 |
This theorem is referenced by: modqabs2 10284 |
Copyright terms: Public domain | W3C validator |