ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqm1p1mod0 Unicode version

Theorem modqm1p1mod0 10520
Description: If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqm1p1mod0  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  ( M  -  1 )  -> 
( ( A  + 
1 )  mod  M
)  =  0 ) )

Proof of Theorem modqm1p1mod0
StepHypRef Expression
1 simpl1 1003 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  ->  A  e.  QQ )
2 1z 9398 . . . . 5  |-  1  e.  ZZ
3 zq 9747 . . . . 5  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
42, 3mp1i 10 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
1  e.  QQ )
5 simp2 1001 . . . . 5  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  QQ )
65adantr 276 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  ->  M  e.  QQ )
7 simpl3 1005 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
0  <  M )
8 modqaddmod 10508 . . . 4  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
91, 4, 6, 7, 8syl22anc 1251 . . 3  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
10 oveq1 5951 . . . . . 6  |-  ( ( A  mod  M )  =  ( M  - 
1 )  ->  (
( A  mod  M
)  +  1 )  =  ( ( M  -  1 )  +  1 ) )
1110oveq1d 5959 . . . . 5  |-  ( ( A  mod  M )  =  ( M  - 
1 )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( ( M  -  1 )  +  1 )  mod  M
) )
1211adantl 277 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( ( M  -  1 )  +  1 )  mod  M ) )
13 qcn 9755 . . . . . . . 8  |-  ( M  e.  QQ  ->  M  e.  CC )
145, 13syl 14 . . . . . . 7  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  M  e.  CC )
1514adantr 276 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  ->  M  e.  CC )
16 npcan1 8450 . . . . . 6  |-  ( M  e.  CC  ->  (
( M  -  1 )  +  1 )  =  M )
1715, 16syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( M  - 
1 )  +  1 )  =  M )
1817oveq1d 5959 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( ( M  -  1 )  +  1 )  mod  M
)  =  ( M  mod  M ) )
19 modqid0 10495 . . . . 5  |-  ( ( M  e.  QQ  /\  0  <  M )  -> 
( M  mod  M
)  =  0 )
206, 7, 19syl2anc 411 . . . 4  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( M  mod  M
)  =  0 )
2112, 18, 203eqtrd 2242 . . 3  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  0 )
229, 21eqtr3d 2240 . 2  |-  ( ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  /\  ( A  mod  M )  =  ( M  - 
1 ) )  -> 
( ( A  + 
1 )  mod  M
)  =  0 )
2322ex 115 1  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  mod  M
)  =  ( M  -  1 )  -> 
( ( A  + 
1 )  mod  M
)  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    < clt 8107    - cmin 8243   ZZcz 9372   QQcq 9740    mod cmo 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator