ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqltm1p1mod Unicode version

Theorem modqltm1p1mod 10598
Description: If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqltm1p1mod  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )

Proof of Theorem modqltm1p1mod
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  A  e.  QQ )
2 1z 9472 . . . 4  |-  1  e.  ZZ
3 zq 9821 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
42, 3mp1i 10 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  QQ )
5 simprl 529 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  QQ )
6 simprr 531 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <  M )
7 modqaddmod 10585 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
81, 4, 5, 6, 7syl22anc 1272 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
91, 5, 6modqcld 10550 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9830 . . . 4  |-  ( ( ( A  mod  M
)  e.  QQ  /\  1  e.  QQ )  ->  ( ( A  mod  M )  +  1 )  e.  QQ )
119, 4, 10syl2anc 411 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  QQ )
12 0red 8147 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  e.  RR )
13 qre 9820 . . . . 5  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  RR )
149, 13syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  RR )
15 1red 8161 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  RR )
1614, 15readdcld 8176 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  RR )
17 modqge0 10554 . . . . 5  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
181, 5, 6, 17syl3anc 1271 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( A  mod  M ) )
1914lep1d 9078 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <_  ( ( A  mod  M )  +  1 ) )
2012, 14, 16, 18, 19letrd 8270 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( ( A  mod  M )  +  1 ) )
21 simplr 528 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <  ( M  -  1 ) )
22 qre 9820 . . . . . 6  |-  ( M  e.  QQ  ->  M  e.  RR )
235, 22syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  RR )
2414, 15, 23ltaddsubd 8692 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  <  M  <->  ( A  mod  M )  <  ( M  - 
1 ) ) )
2521, 24mpbird 167 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  <  M )
26 modqid 10571 . . 3  |-  ( ( ( ( ( A  mod  M )  +  1 )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_ 
( ( A  mod  M )  +  1 )  /\  ( ( A  mod  M )  +  1 )  <  M
) )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  mod  M )  +  1 ) )
2711, 5, 20, 25, 26syl22anc 1272 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
288, 27eqtr3d 2264 1  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   ZZcz 9446   QQcq 9814    mod cmo 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490  df-mod 10545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator