ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqltm1p1mod Unicode version

Theorem modqltm1p1mod 10485
Description: If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqltm1p1mod  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )

Proof of Theorem modqltm1p1mod
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  A  e.  QQ )
2 1z 9369 . . . 4  |-  1  e.  ZZ
3 zq 9717 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
42, 3mp1i 10 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  QQ )
5 simprl 529 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  QQ )
6 simprr 531 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <  M )
7 modqaddmod 10472 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
81, 4, 5, 6, 7syl22anc 1250 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
91, 5, 6modqcld 10437 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9726 . . . 4  |-  ( ( ( A  mod  M
)  e.  QQ  /\  1  e.  QQ )  ->  ( ( A  mod  M )  +  1 )  e.  QQ )
119, 4, 10syl2anc 411 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  QQ )
12 0red 8044 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  e.  RR )
13 qre 9716 . . . . 5  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  RR )
149, 13syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  RR )
15 1red 8058 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  RR )
1614, 15readdcld 8073 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  RR )
17 modqge0 10441 . . . . 5  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
181, 5, 6, 17syl3anc 1249 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( A  mod  M ) )
1914lep1d 8975 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <_  ( ( A  mod  M )  +  1 ) )
2012, 14, 16, 18, 19letrd 8167 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( ( A  mod  M )  +  1 ) )
21 simplr 528 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <  ( M  -  1 ) )
22 qre 9716 . . . . . 6  |-  ( M  e.  QQ  ->  M  e.  RR )
235, 22syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  RR )
2414, 15, 23ltaddsubd 8589 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  <  M  <->  ( A  mod  M )  <  ( M  - 
1 ) ) )
2521, 24mpbird 167 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  <  M )
26 modqid 10458 . . 3  |-  ( ( ( ( ( A  mod  M )  +  1 )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_ 
( ( A  mod  M )  +  1 )  /\  ( ( A  mod  M )  +  1 )  <  M
) )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  mod  M )  +  1 ) )
2711, 5, 20, 25, 26syl22anc 1250 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
288, 27eqtr3d 2231 1  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079    - cmin 8214   ZZcz 9343   QQcq 9710    mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator