ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqltm1p1mod Unicode version

Theorem modqltm1p1mod 10180
Description: If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqltm1p1mod  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )

Proof of Theorem modqltm1p1mod
StepHypRef Expression
1 simpll 519 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  A  e.  QQ )
2 1z 9104 . . . 4  |-  1  e.  ZZ
3 zq 9445 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
42, 3mp1i 10 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  QQ )
5 simprl 521 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  QQ )
6 simprr 522 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <  M )
7 modqaddmod 10167 . . 3  |-  ( ( ( A  e.  QQ  /\  1  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
81, 4, 5, 6, 7syl22anc 1218 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  +  1 )  mod  M ) )
91, 5, 6modqcld 10132 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  QQ )
10 qaddcl 9454 . . . 4  |-  ( ( ( A  mod  M
)  e.  QQ  /\  1  e.  QQ )  ->  ( ( A  mod  M )  +  1 )  e.  QQ )
119, 4, 10syl2anc 409 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  QQ )
12 0red 7791 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  e.  RR )
13 qre 9444 . . . . 5  |-  ( ( A  mod  M )  e.  QQ  ->  ( A  mod  M )  e.  RR )
149, 13syl 14 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  e.  RR )
15 1red 7805 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
1  e.  RR )
1614, 15readdcld 7819 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  e.  RR )
17 modqge0 10136 . . . . 5  |-  ( ( A  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( A  mod  M
) )
181, 5, 6, 17syl3anc 1217 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( A  mod  M ) )
1914lep1d 8713 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <_  ( ( A  mod  M )  +  1 ) )
2012, 14, 16, 18, 19letrd 7910 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <_  ( ( A  mod  M )  +  1 ) )
21 simplr 520 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  mod  M
)  <  ( M  -  1 ) )
22 qre 9444 . . . . . 6  |-  ( M  e.  QQ  ->  M  e.  RR )
235, 22syl 14 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  RR )
2414, 15, 23ltaddsubd 8331 . . . 4  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  <  M  <->  ( A  mod  M )  <  ( M  - 
1 ) ) )
2521, 24mpbird 166 . . 3  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  mod  M )  +  1 )  <  M )
26 modqid 10153 . . 3  |-  ( ( ( ( ( A  mod  M )  +  1 )  e.  QQ  /\  M  e.  QQ )  /\  ( 0  <_ 
( ( A  mod  M )  +  1 )  /\  ( ( A  mod  M )  +  1 )  <  M
) )  ->  (
( ( A  mod  M )  +  1 )  mod  M )  =  ( ( A  mod  M )  +  1 ) )
2711, 5, 20, 25, 26syl22anc 1218 . 2  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( A  mod  M )  +  1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
288, 27eqtr3d 2175 1  |-  ( ( ( A  e.  QQ  /\  ( A  mod  M
)  <  ( M  -  1 ) )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  + 
1 )  mod  M
)  =  ( ( A  mod  M )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    < clt 7824    <_ cle 7825    - cmin 7957   ZZcz 9078   QQcq 9438    mod cmo 10126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator