ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqm1p1mod0 GIF version

Theorem modqm1p1mod0 10592
Description: If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqm1p1mod0 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))

Proof of Theorem modqm1p1mod0
StepHypRef Expression
1 simpl1 1024 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝐴 ∈ ℚ)
2 1z 9468 . . . . 5 1 ∈ ℤ
3 zq 9817 . . . . 5 (1 ∈ ℤ → 1 ∈ ℚ)
42, 3mp1i 10 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 1 ∈ ℚ)
5 simp2 1022 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
65adantr 276 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℚ)
7 simpl3 1026 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 0 < 𝑀)
8 modqaddmod 10580 . . . 4 (((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
91, 4, 6, 7, 8syl22anc 1272 . . 3 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
10 oveq1 6007 . . . . . 6 ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 mod 𝑀) + 1) = ((𝑀 − 1) + 1))
1110oveq1d 6015 . . . . 5 ((𝐴 mod 𝑀) = (𝑀 − 1) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀))
1211adantl 277 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀))
13 qcn 9825 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
145, 13syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℂ)
1514adantr 276 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℂ)
16 npcan1 8520 . . . . . 6 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
1715, 16syl 14 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
1817oveq1d 6015 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝑀 − 1) + 1) mod 𝑀) = (𝑀 mod 𝑀))
19 modqid0 10567 . . . . 5 ((𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) = 0)
206, 7, 19syl2anc 411 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (𝑀 mod 𝑀) = 0)
2112, 18, 203eqtrd 2266 . . 3 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = 0)
229, 21eqtr3d 2264 . 2 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = 0)
2322ex 115 1 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cmin 8313  cz 9442  cq 9810   mod cmo 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-q 9811  df-rp 9846  df-fl 10485  df-mod 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator