ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqm1p1mod0 GIF version

Theorem modqm1p1mod0 10372
Description: If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqm1p1mod0 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))

Proof of Theorem modqm1p1mod0
StepHypRef Expression
1 simpl1 1000 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝐴 ∈ ℚ)
2 1z 9277 . . . . 5 1 ∈ ℤ
3 zq 9624 . . . . 5 (1 ∈ ℤ → 1 ∈ ℚ)
42, 3mp1i 10 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 1 ∈ ℚ)
5 simp2 998 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ)
65adantr 276 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℚ)
7 simpl3 1002 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 0 < 𝑀)
8 modqaddmod 10360 . . . 4 (((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
91, 4, 6, 7, 8syl22anc 1239 . . 3 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
10 oveq1 5881 . . . . . 6 ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 mod 𝑀) + 1) = ((𝑀 − 1) + 1))
1110oveq1d 5889 . . . . 5 ((𝐴 mod 𝑀) = (𝑀 − 1) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀))
1211adantl 277 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀))
13 qcn 9632 . . . . . . . 8 (𝑀 ∈ ℚ → 𝑀 ∈ ℂ)
145, 13syl 14 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℂ)
1514adantr 276 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℂ)
16 npcan1 8333 . . . . . 6 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
1715, 16syl 14 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀)
1817oveq1d 5889 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝑀 − 1) + 1) mod 𝑀) = (𝑀 mod 𝑀))
19 modqid0 10347 . . . . 5 ((𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) = 0)
206, 7, 19syl2anc 411 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (𝑀 mod 𝑀) = 0)
2112, 18, 203eqtrd 2214 . . 3 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = 0)
229, 21eqtr3d 2212 . 2 (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = 0)
2322ex 115 1 ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   + caddc 7813   < clt 7990  cmin 8126  cz 9251  cq 9617   mod cmo 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-n0 9175  df-z 9252  df-q 9618  df-rp 9652  df-fl 10267  df-mod 10320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator