| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqm1p1mod0 | GIF version | ||
| Description: If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqm1p1mod0 | ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝐴 ∈ ℚ) | |
| 2 | 1z 9369 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 3 | zq 9717 | . . . . 5 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
| 4 | 2, 3 | mp1i 10 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 1 ∈ ℚ) |
| 5 | simp2 1000 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℚ) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℚ) |
| 7 | simpl3 1004 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 0 < 𝑀) | |
| 8 | modqaddmod 10472 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) | |
| 9 | 1, 4, 6, 7, 8 | syl22anc 1250 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
| 10 | oveq1 5932 | . . . . . 6 ⊢ ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 mod 𝑀) + 1) = ((𝑀 − 1) + 1)) | |
| 11 | 10 | oveq1d 5940 | . . . . 5 ⊢ ((𝐴 mod 𝑀) = (𝑀 − 1) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀)) |
| 12 | 11 | adantl 277 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (((𝑀 − 1) + 1) mod 𝑀)) |
| 13 | qcn 9725 | . . . . . . . 8 ⊢ (𝑀 ∈ ℚ → 𝑀 ∈ ℂ) | |
| 14 | 5, 13 | syl 14 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 𝑀 ∈ ℂ) |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → 𝑀 ∈ ℂ) |
| 16 | npcan1 8421 | . . . . . 6 ⊢ (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀) | |
| 17 | 15, 16 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀) |
| 18 | 17 | oveq1d 5940 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝑀 − 1) + 1) mod 𝑀) = (𝑀 mod 𝑀)) |
| 19 | modqid0 10459 | . . . . 5 ⊢ ((𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝑀 mod 𝑀) = 0) | |
| 20 | 6, 7, 19 | syl2anc 411 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (𝑀 mod 𝑀) = 0) |
| 21 | 12, 18, 20 | 3eqtrd 2233 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = 0) |
| 22 | 9, 21 | eqtr3d 2231 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) ∧ (𝐴 mod 𝑀) = (𝑀 − 1)) → ((𝐴 + 1) mod 𝑀) = 0) |
| 23 | 22 | ex 115 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 + caddc 7899 < clt 8078 − cmin 8214 ℤcz 9343 ℚcq 9710 mod cmo 10431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |