ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul12d Unicode version

Theorem modqmul12d 10151
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul12d.1  |-  ( ph  ->  A  e.  ZZ )
modqmul12d.2  |-  ( ph  ->  B  e.  ZZ )
modqmul12d.3  |-  ( ph  ->  C  e.  ZZ )
modqmul12d.4  |-  ( ph  ->  D  e.  ZZ )
modqmul12d.5  |-  ( ph  ->  E  e.  QQ )
modqmul12d.egt0  |-  ( ph  ->  0  <  E )
modqmul12d.6  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
modqmul12d.7  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
Assertion
Ref Expression
modqmul12d  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )

Proof of Theorem modqmul12d
StepHypRef Expression
1 modqmul12d.1 . . . 4  |-  ( ph  ->  A  e.  ZZ )
2 zq 9418 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . 3  |-  ( ph  ->  A  e.  QQ )
4 modqmul12d.2 . . . 4  |-  ( ph  ->  B  e.  ZZ )
5 zq 9418 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  QQ )
64, 5syl 14 . . 3  |-  ( ph  ->  B  e.  QQ )
7 modqmul12d.3 . . 3  |-  ( ph  ->  C  e.  ZZ )
8 modqmul12d.5 . . 3  |-  ( ph  ->  E  e.  QQ )
9 modqmul12d.egt0 . . 3  |-  ( ph  ->  0  <  E )
10 modqmul12d.6 . . 3  |-  ( ph  ->  ( A  mod  E
)  =  ( B  mod  E ) )
113, 6, 7, 8, 9, 10modqmul1 10150 . 2  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  C )  mod  E ) )
124zcnd 9174 . . . . 5  |-  ( ph  ->  B  e.  CC )
137zcnd 9174 . . . . 5  |-  ( ph  ->  C  e.  CC )
1412, 13mulcomd 7787 . . . 4  |-  ( ph  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1514oveq1d 5789 . . 3  |-  ( ph  ->  ( ( B  x.  C )  mod  E
)  =  ( ( C  x.  B )  mod  E ) )
16 zq 9418 . . . . 5  |-  ( C  e.  ZZ  ->  C  e.  QQ )
177, 16syl 14 . . . 4  |-  ( ph  ->  C  e.  QQ )
18 modqmul12d.4 . . . . 5  |-  ( ph  ->  D  e.  ZZ )
19 zq 9418 . . . . 5  |-  ( D  e.  ZZ  ->  D  e.  QQ )
2018, 19syl 14 . . . 4  |-  ( ph  ->  D  e.  QQ )
21 modqmul12d.7 . . . 4  |-  ( ph  ->  ( C  mod  E
)  =  ( D  mod  E ) )
2217, 20, 4, 8, 9, 21modqmul1 10150 . . 3  |-  ( ph  ->  ( ( C  x.  B )  mod  E
)  =  ( ( D  x.  B )  mod  E ) )
2318zcnd 9174 . . . . 5  |-  ( ph  ->  D  e.  CC )
2423, 12mulcomd 7787 . . . 4  |-  ( ph  ->  ( D  x.  B
)  =  ( B  x.  D ) )
2524oveq1d 5789 . . 3  |-  ( ph  ->  ( ( D  x.  B )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
2615, 22, 253eqtrd 2176 . 2  |-  ( ph  ->  ( ( B  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
2711, 26eqtrd 2172 1  |-  ( ph  ->  ( ( A  x.  C )  mod  E
)  =  ( ( B  x.  D )  mod  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   0cc0 7620    x. cmul 7625    < clt 7800   ZZcz 9054   QQcq 9411    mod cmo 10095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator