| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmul12d | Unicode version | ||
| Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmul12d.1 |
|
| modqmul12d.2 |
|
| modqmul12d.3 |
|
| modqmul12d.4 |
|
| modqmul12d.5 |
|
| modqmul12d.egt0 |
|
| modqmul12d.6 |
|
| modqmul12d.7 |
|
| Ref | Expression |
|---|---|
| modqmul12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqmul12d.1 |
. . . 4
| |
| 2 | zq 9703 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | modqmul12d.2 |
. . . 4
| |
| 5 | zq 9703 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | modqmul12d.3 |
. . 3
| |
| 8 | modqmul12d.5 |
. . 3
| |
| 9 | modqmul12d.egt0 |
. . 3
| |
| 10 | modqmul12d.6 |
. . 3
| |
| 11 | 3, 6, 7, 8, 9, 10 | modqmul1 10472 |
. 2
|
| 12 | 4 | zcnd 9452 |
. . . . 5
|
| 13 | 7 | zcnd 9452 |
. . . . 5
|
| 14 | 12, 13 | mulcomd 8051 |
. . . 4
|
| 15 | 14 | oveq1d 5938 |
. . 3
|
| 16 | zq 9703 |
. . . . 5
| |
| 17 | 7, 16 | syl 14 |
. . . 4
|
| 18 | modqmul12d.4 |
. . . . 5
| |
| 19 | zq 9703 |
. . . . 5
| |
| 20 | 18, 19 | syl 14 |
. . . 4
|
| 21 | modqmul12d.7 |
. . . 4
| |
| 22 | 17, 20, 4, 8, 9, 21 | modqmul1 10472 |
. . 3
|
| 23 | 18 | zcnd 9452 |
. . . . 5
|
| 24 | 23, 12 | mulcomd 8051 |
. . . 4
|
| 25 | 24 | oveq1d 5938 |
. . 3
|
| 26 | 15, 22, 25 | 3eqtrd 2233 |
. 2
|
| 27 | 11, 26 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-n0 9253 df-z 9330 df-q 9697 df-rp 9732 df-fl 10363 df-mod 10418 |
| This theorem is referenced by: modqexp 10761 fprodmodd 11809 modxai 12596 lgsdir2lem5 15299 lgseisenlem2 15338 lgseisenlem3 15339 |
| Copyright terms: Public domain | W3C validator |