ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp Unicode version

Theorem modqexp 10577
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a  |-  ( ph  ->  A  e.  ZZ )
modqexp.b  |-  ( ph  ->  B  e.  ZZ )
modqexp.c  |-  ( ph  ->  C  e.  NN0 )
modqexp.dq  |-  ( ph  ->  D  e.  QQ )
modqexp.dgt0  |-  ( ph  ->  0  <  D )
modqexp.mod  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqexp  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )

Proof of Theorem modqexp
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2  |-  ( ph  ->  C  e.  NN0 )
2 oveq2 5849 . . . . . 6  |-  ( w  =  0  ->  ( A ^ w )  =  ( A ^ 0 ) )
32oveq1d 5856 . . . . 5  |-  ( w  =  0  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
4 oveq2 5849 . . . . . 6  |-  ( w  =  0  ->  ( B ^ w )  =  ( B ^ 0 ) )
54oveq1d 5856 . . . . 5  |-  ( w  =  0  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
63, 5eqeq12d 2180 . . . 4  |-  ( w  =  0  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
76imbi2d 229 . . 3  |-  ( w  =  0  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) ) ) )
8 oveq2 5849 . . . . . 6  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
98oveq1d 5856 . . . . 5  |-  ( w  =  k  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
10 oveq2 5849 . . . . . 6  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
1110oveq1d 5856 . . . . 5  |-  ( w  =  k  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
129, 11eqeq12d 2180 . . . 4  |-  ( w  =  k  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1312imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) ) ) )
14 oveq2 5849 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
1514oveq1d 5856 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
16 oveq2 5849 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1716oveq1d 5856 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
1815, 17eqeq12d 2180 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
1918imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
20 oveq2 5849 . . . . . 6  |-  ( w  =  C  ->  ( A ^ w )  =  ( A ^ C
) )
2120oveq1d 5856 . . . . 5  |-  ( w  =  C  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
22 oveq2 5849 . . . . . 6  |-  ( w  =  C  ->  ( B ^ w )  =  ( B ^ C
) )
2322oveq1d 5856 . . . . 5  |-  ( w  =  C  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2421, 23eqeq12d 2180 . . . 4  |-  ( w  =  C  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2524imbi2d 229 . . 3  |-  ( w  =  C  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) ) )
26 modqexp.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2726zcnd 9310 . . . . . 6  |-  ( ph  ->  A  e.  CC )
28 exp0 10455 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2927, 28syl 14 . . . . 5  |-  ( ph  ->  ( A ^ 0 )  =  1 )
30 modqexp.b . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
3130zcnd 9310 . . . . . 6  |-  ( ph  ->  B  e.  CC )
32 exp0 10455 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 14 . . . . 5  |-  ( ph  ->  ( B ^ 0 )  =  1 )
3429, 33eqtr4d 2201 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3534oveq1d 5856 . . 3  |-  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
36 zexpcl 10466 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
3726, 36sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  ZZ )
3837adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
39 zexpcl 10466 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4030, 39sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B ^ k )  e.  ZZ )
4140adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
4226ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
4330ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
44 modqexp.dq . . . . . . . . 9  |-  ( ph  ->  D  e.  QQ )
4544ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  QQ )
46 modqexp.dgt0 . . . . . . . . 9  |-  ( ph  ->  0  <  D )
4746ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
0  <  D )
48 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
49 modqexp.mod . . . . . . . . 9  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
5049ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10309 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5227ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
53 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
5453adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
55 expp1 10458 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5652, 54, 55syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5756oveq1d 5856 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5831ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
59 expp1 10458 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6058, 54, 59syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6160oveq1d 5856 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
6251, 57, 613eqtr4d 2208 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
6362ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) )
6463expcom 115 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
6564a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
)  ->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
667, 13, 19, 25, 35, 65nn0ind 9301 . 2  |-  ( C  e.  NN0  ->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) )
671, 66mpcom 36 1  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3981  (class class class)co 5841   CCcc 7747   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    < clt 7929   NN0cn0 9110   ZZcz 9187   QQcq 9553    mod cmo 10253   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  dvdsmodexp  11731  odzdvds  12173  lgsmod  13527  lgsne0  13539
  Copyright terms: Public domain W3C validator