ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp Unicode version

Theorem modqexp 10737
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a  |-  ( ph  ->  A  e.  ZZ )
modqexp.b  |-  ( ph  ->  B  e.  ZZ )
modqexp.c  |-  ( ph  ->  C  e.  NN0 )
modqexp.dq  |-  ( ph  ->  D  e.  QQ )
modqexp.dgt0  |-  ( ph  ->  0  <  D )
modqexp.mod  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqexp  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )

Proof of Theorem modqexp
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2  |-  ( ph  ->  C  e.  NN0 )
2 oveq2 5926 . . . . . 6  |-  ( w  =  0  ->  ( A ^ w )  =  ( A ^ 0 ) )
32oveq1d 5933 . . . . 5  |-  ( w  =  0  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
4 oveq2 5926 . . . . . 6  |-  ( w  =  0  ->  ( B ^ w )  =  ( B ^ 0 ) )
54oveq1d 5933 . . . . 5  |-  ( w  =  0  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
63, 5eqeq12d 2208 . . . 4  |-  ( w  =  0  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
76imbi2d 230 . . 3  |-  ( w  =  0  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) ) ) )
8 oveq2 5926 . . . . . 6  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
98oveq1d 5933 . . . . 5  |-  ( w  =  k  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
10 oveq2 5926 . . . . . 6  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
1110oveq1d 5933 . . . . 5  |-  ( w  =  k  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
129, 11eqeq12d 2208 . . . 4  |-  ( w  =  k  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) ) ) )
14 oveq2 5926 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
1514oveq1d 5933 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
16 oveq2 5926 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1716oveq1d 5933 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
1815, 17eqeq12d 2208 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
1918imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
20 oveq2 5926 . . . . . 6  |-  ( w  =  C  ->  ( A ^ w )  =  ( A ^ C
) )
2120oveq1d 5933 . . . . 5  |-  ( w  =  C  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
22 oveq2 5926 . . . . . 6  |-  ( w  =  C  ->  ( B ^ w )  =  ( B ^ C
) )
2322oveq1d 5933 . . . . 5  |-  ( w  =  C  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2421, 23eqeq12d 2208 . . . 4  |-  ( w  =  C  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2524imbi2d 230 . . 3  |-  ( w  =  C  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) ) )
26 modqexp.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2726zcnd 9440 . . . . . 6  |-  ( ph  ->  A  e.  CC )
28 exp0 10614 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2927, 28syl 14 . . . . 5  |-  ( ph  ->  ( A ^ 0 )  =  1 )
30 modqexp.b . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
3130zcnd 9440 . . . . . 6  |-  ( ph  ->  B  e.  CC )
32 exp0 10614 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 14 . . . . 5  |-  ( ph  ->  ( B ^ 0 )  =  1 )
3429, 33eqtr4d 2229 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3534oveq1d 5933 . . 3  |-  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
36 zexpcl 10625 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
3726, 36sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  ZZ )
3837adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
39 zexpcl 10625 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4030, 39sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B ^ k )  e.  ZZ )
4140adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
4226ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
4330ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
44 modqexp.dq . . . . . . . . 9  |-  ( ph  ->  D  e.  QQ )
4544ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  QQ )
46 modqexp.dgt0 . . . . . . . . 9  |-  ( ph  ->  0  <  D )
4746ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
0  <  D )
48 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
49 modqexp.mod . . . . . . . . 9  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
5049ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10449 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5227ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
53 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
5453adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
55 expp1 10617 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5652, 54, 55syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5756oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5831ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
59 expp1 10617 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6058, 54, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6160oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
6251, 57, 613eqtr4d 2236 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
6362ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) )
6463expcom 116 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
6564a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
)  ->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
667, 13, 19, 25, 35, 65nn0ind 9431 . 2  |-  ( C  e.  NN0  ->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) )
671, 66mpcom 36 1  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054   NN0cn0 9240   ZZcz 9317   QQcq 9684    mod cmo 10393   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  dvdsmodexp  11938  odzdvds  12383  lgsmod  15142  lgsne0  15154
  Copyright terms: Public domain W3C validator