ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp Unicode version

Theorem modqexp 10553
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a  |-  ( ph  ->  A  e.  ZZ )
modqexp.b  |-  ( ph  ->  B  e.  ZZ )
modqexp.c  |-  ( ph  ->  C  e.  NN0 )
modqexp.dq  |-  ( ph  ->  D  e.  QQ )
modqexp.dgt0  |-  ( ph  ->  0  <  D )
modqexp.mod  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqexp  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )

Proof of Theorem modqexp
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2  |-  ( ph  ->  C  e.  NN0 )
2 oveq2 5834 . . . . . 6  |-  ( w  =  0  ->  ( A ^ w )  =  ( A ^ 0 ) )
32oveq1d 5841 . . . . 5  |-  ( w  =  0  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
4 oveq2 5834 . . . . . 6  |-  ( w  =  0  ->  ( B ^ w )  =  ( B ^ 0 ) )
54oveq1d 5841 . . . . 5  |-  ( w  =  0  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
63, 5eqeq12d 2172 . . . 4  |-  ( w  =  0  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
76imbi2d 229 . . 3  |-  ( w  =  0  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) ) ) )
8 oveq2 5834 . . . . . 6  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
98oveq1d 5841 . . . . 5  |-  ( w  =  k  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
10 oveq2 5834 . . . . . 6  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
1110oveq1d 5841 . . . . 5  |-  ( w  =  k  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
129, 11eqeq12d 2172 . . . 4  |-  ( w  =  k  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1312imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) ) ) )
14 oveq2 5834 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
1514oveq1d 5841 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
16 oveq2 5834 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1716oveq1d 5841 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
1815, 17eqeq12d 2172 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
1918imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
20 oveq2 5834 . . . . . 6  |-  ( w  =  C  ->  ( A ^ w )  =  ( A ^ C
) )
2120oveq1d 5841 . . . . 5  |-  ( w  =  C  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
22 oveq2 5834 . . . . . 6  |-  ( w  =  C  ->  ( B ^ w )  =  ( B ^ C
) )
2322oveq1d 5841 . . . . 5  |-  ( w  =  C  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2421, 23eqeq12d 2172 . . . 4  |-  ( w  =  C  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2524imbi2d 229 . . 3  |-  ( w  =  C  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) ) )
26 modqexp.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2726zcnd 9292 . . . . . 6  |-  ( ph  ->  A  e.  CC )
28 exp0 10432 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2927, 28syl 14 . . . . 5  |-  ( ph  ->  ( A ^ 0 )  =  1 )
30 modqexp.b . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
3130zcnd 9292 . . . . . 6  |-  ( ph  ->  B  e.  CC )
32 exp0 10432 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 14 . . . . 5  |-  ( ph  ->  ( B ^ 0 )  =  1 )
3429, 33eqtr4d 2193 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3534oveq1d 5841 . . 3  |-  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
36 zexpcl 10443 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
3726, 36sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  ZZ )
3837adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
39 zexpcl 10443 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4030, 39sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B ^ k )  e.  ZZ )
4140adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
4226ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
4330ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
44 modqexp.dq . . . . . . . . 9  |-  ( ph  ->  D  e.  QQ )
4544ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  QQ )
46 modqexp.dgt0 . . . . . . . . 9  |-  ( ph  ->  0  <  D )
4746ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
0  <  D )
48 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
49 modqexp.mod . . . . . . . . 9  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
5049ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10286 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5227ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
53 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
5453adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
55 expp1 10435 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5652, 54, 55syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5756oveq1d 5841 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5831ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
59 expp1 10435 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6058, 54, 59syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6160oveq1d 5841 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
6251, 57, 613eqtr4d 2200 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
6362ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) )
6463expcom 115 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
6564a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
)  ->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
667, 13, 19, 25, 35, 65nn0ind 9283 . 2  |-  ( C  e.  NN0  ->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) )
671, 66mpcom 36 1  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3967  (class class class)co 5826   CCcc 7732   0cc0 7734   1c1 7735    + caddc 7737    x. cmul 7739    < clt 7914   NN0cn0 9095   ZZcz 9172   QQcq 9534    mod cmo 10230   ^cexp 10427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fl 10178  df-mod 10231  df-seqfrec 10354  df-exp 10428
This theorem is referenced by:  dvdsmodexp  11702  odzdvds  12135
  Copyright terms: Public domain W3C validator