ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqexp Unicode version

Theorem modqexp 10883
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
Hypotheses
Ref Expression
modqexp.a  |-  ( ph  ->  A  e.  ZZ )
modqexp.b  |-  ( ph  ->  B  e.  ZZ )
modqexp.c  |-  ( ph  ->  C  e.  NN0 )
modqexp.dq  |-  ( ph  ->  D  e.  QQ )
modqexp.dgt0  |-  ( ph  ->  0  <  D )
modqexp.mod  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
Assertion
Ref Expression
modqexp  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )

Proof of Theorem modqexp
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modqexp.c . 2  |-  ( ph  ->  C  e.  NN0 )
2 oveq2 6008 . . . . . 6  |-  ( w  =  0  ->  ( A ^ w )  =  ( A ^ 0 ) )
32oveq1d 6015 . . . . 5  |-  ( w  =  0  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ 0 )  mod 
D ) )
4 oveq2 6008 . . . . . 6  |-  ( w  =  0  ->  ( B ^ w )  =  ( B ^ 0 ) )
54oveq1d 6015 . . . . 5  |-  ( w  =  0  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ 0 )  mod 
D ) )
63, 5eqeq12d 2244 . . . 4  |-  ( w  =  0  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ 0 )  mod 
D )  =  ( ( B ^ 0 )  mod  D ) ) )
76imbi2d 230 . . 3  |-  ( w  =  0  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) ) ) )
8 oveq2 6008 . . . . . 6  |-  ( w  =  k  ->  ( A ^ w )  =  ( A ^ k
) )
98oveq1d 6015 . . . . 5  |-  ( w  =  k  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ k )  mod 
D ) )
10 oveq2 6008 . . . . . 6  |-  ( w  =  k  ->  ( B ^ w )  =  ( B ^ k
) )
1110oveq1d 6015 . . . . 5  |-  ( w  =  k  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )
129, 11eqeq12d 2244 . . . 4  |-  ( w  =  k  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) ) ) )
14 oveq2 6008 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A ^ w )  =  ( A ^ (
k  +  1 ) ) )
1514oveq1d 6015 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ ( k  +  1 ) )  mod 
D ) )
16 oveq2 6008 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( B ^ w )  =  ( B ^ (
k  +  1 ) ) )
1716oveq1d 6015 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) )
1815, 17eqeq12d 2244 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ ( k  +  1 ) )  mod 
D )  =  ( ( B ^ (
k  +  1 ) )  mod  D ) ) )
1918imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
20 oveq2 6008 . . . . . 6  |-  ( w  =  C  ->  ( A ^ w )  =  ( A ^ C
) )
2120oveq1d 6015 . . . . 5  |-  ( w  =  C  ->  (
( A ^ w
)  mod  D )  =  ( ( A ^ C )  mod 
D ) )
22 oveq2 6008 . . . . . 6  |-  ( w  =  C  ->  ( B ^ w )  =  ( B ^ C
) )
2322oveq1d 6015 . . . . 5  |-  ( w  =  C  ->  (
( B ^ w
)  mod  D )  =  ( ( B ^ C )  mod 
D ) )
2421, 23eqeq12d 2244 . . . 4  |-  ( w  =  C  ->  (
( ( A ^
w )  mod  D
)  =  ( ( B ^ w )  mod  D )  <->  ( ( A ^ C )  mod 
D )  =  ( ( B ^ C
)  mod  D )
) )
2524imbi2d 230 . . 3  |-  ( w  =  C  ->  (
( ph  ->  ( ( A ^ w )  mod  D )  =  ( ( B ^
w )  mod  D
) )  <->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) ) )
26 modqexp.a . . . . . . 7  |-  ( ph  ->  A  e.  ZZ )
2726zcnd 9566 . . . . . 6  |-  ( ph  ->  A  e.  CC )
28 exp0 10760 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2927, 28syl 14 . . . . 5  |-  ( ph  ->  ( A ^ 0 )  =  1 )
30 modqexp.b . . . . . . 7  |-  ( ph  ->  B  e.  ZZ )
3130zcnd 9566 . . . . . 6  |-  ( ph  ->  B  e.  CC )
32 exp0 10760 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
3331, 32syl 14 . . . . 5  |-  ( ph  ->  ( B ^ 0 )  =  1 )
3429, 33eqtr4d 2265 . . . 4  |-  ( ph  ->  ( A ^ 0 )  =  ( B ^ 0 ) )
3534oveq1d 6015 . . 3  |-  ( ph  ->  ( ( A ^
0 )  mod  D
)  =  ( ( B ^ 0 )  mod  D ) )
36 zexpcl 10771 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
3726, 36sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A ^ k )  e.  ZZ )
3837adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ k
)  e.  ZZ )
39 zexpcl 10771 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  ZZ )
4030, 39sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( B ^ k )  e.  ZZ )
4140adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ k
)  e.  ZZ )
4226ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  ZZ )
4330ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  ZZ )
44 modqexp.dq . . . . . . . . 9  |-  ( ph  ->  D  e.  QQ )
4544ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  D  e.  QQ )
46 modqexp.dgt0 . . . . . . . . 9  |-  ( ph  ->  0  <  D )
4746ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
0  <  D )
48 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
k )  mod  D
)  =  ( ( B ^ k )  mod  D ) )
49 modqexp.mod . . . . . . . . 9  |-  ( ph  ->  ( A  mod  D
)  =  ( B  mod  D ) )
5049ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A  mod  D
)  =  ( B  mod  D ) )
5138, 41, 42, 43, 45, 47, 48, 50modqmul12d 10595 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( ( A ^ k )  x.  A )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
5227ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  A  e.  CC )
53 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
5453adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
k  e.  NN0 )
55 expp1 10763 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5652, 54, 55syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5756oveq1d 6015 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( ( A ^ k
)  x.  A )  mod  D ) )
5831ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  ->  B  e.  CC )
59 expp1 10763 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6058, 54, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6160oveq1d 6015 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( B ^
( k  +  1 ) )  mod  D
)  =  ( ( ( B ^ k
)  x.  B )  mod  D ) )
6251, 57, 613eqtr4d 2272 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D ) )  -> 
( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) )
6362ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( A ^ k
)  mod  D )  =  ( ( B ^ k )  mod 
D )  ->  (
( A ^ (
k  +  1 ) )  mod  D )  =  ( ( B ^ ( k  +  1 ) )  mod 
D ) ) )
6463expcom 116 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
6564a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( A ^ k )  mod 
D )  =  ( ( B ^ k
)  mod  D )
)  ->  ( ph  ->  ( ( A ^
( k  +  1 ) )  mod  D
)  =  ( ( B ^ ( k  +  1 ) )  mod  D ) ) ) )
667, 13, 19, 25, 35, 65nn0ind 9557 . 2  |-  ( C  e.  NN0  ->  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) ) )
671, 66mpcom 36 1  |-  ( ph  ->  ( ( A ^ C )  mod  D
)  =  ( ( B ^ C )  mod  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000    < clt 8177   NN0cn0 9365   ZZcz 9442   QQcq 9810    mod cmo 10539   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  dvdsmodexp  12301  odzdvds  12763  lgsmod  15699  lgsne0  15711
  Copyright terms: Public domain W3C validator