ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul12d GIF version

Theorem modqmul12d 10470
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul12d.1 (𝜑𝐴 ∈ ℤ)
modqmul12d.2 (𝜑𝐵 ∈ ℤ)
modqmul12d.3 (𝜑𝐶 ∈ ℤ)
modqmul12d.4 (𝜑𝐷 ∈ ℤ)
modqmul12d.5 (𝜑𝐸 ∈ ℚ)
modqmul12d.egt0 (𝜑 → 0 < 𝐸)
modqmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modqmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modqmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modqmul12d
StepHypRef Expression
1 modqmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 zq 9700 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . 3 (𝜑𝐴 ∈ ℚ)
4 modqmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
5 zq 9700 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
64, 5syl 14 . . 3 (𝜑𝐵 ∈ ℚ)
7 modqmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
8 modqmul12d.5 . . 3 (𝜑𝐸 ∈ ℚ)
9 modqmul12d.egt0 . . 3 (𝜑 → 0 < 𝐸)
10 modqmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
113, 6, 7, 8, 9, 10modqmul1 10469 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
124zcnd 9449 . . . . 5 (𝜑𝐵 ∈ ℂ)
137zcnd 9449 . . . . 5 (𝜑𝐶 ∈ ℂ)
1412, 13mulcomd 8048 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1514oveq1d 5937 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
16 zq 9700 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
177, 16syl 14 . . . 4 (𝜑𝐶 ∈ ℚ)
18 modqmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
19 zq 9700 . . . . 5 (𝐷 ∈ ℤ → 𝐷 ∈ ℚ)
2018, 19syl 14 . . . 4 (𝜑𝐷 ∈ ℚ)
21 modqmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
2217, 20, 4, 8, 9, 21modqmul1 10469 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2318zcnd 9449 . . . . 5 (𝜑𝐷 ∈ ℂ)
2423, 12mulcomd 8048 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2524oveq1d 5937 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2615, 22, 253eqtrd 2233 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2711, 26eqtrd 2229 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  0cc0 7879   · cmul 7884   < clt 8061  cz 9326  cq 9693   mod cmo 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415
This theorem is referenced by:  modqexp  10758  fprodmodd  11806  modxai  12585  lgsdir2lem5  15273  lgseisenlem2  15312  lgseisenlem3  15313
  Copyright terms: Public domain W3C validator