| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmul12d | GIF version | ||
| Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| modqmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| modqmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| modqmul12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| modqmul12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℚ) |
| modqmul12d.egt0 | ⊢ (𝜑 → 0 < 𝐸) |
| modqmul12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
| modqmul12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
| Ref | Expression |
|---|---|
| modqmul12d | ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | zq 9717 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 4 | modqmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 5 | zq 9717 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℚ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| 7 | modqmul12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 8 | modqmul12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℚ) | |
| 9 | modqmul12d.egt0 | . . 3 ⊢ (𝜑 → 0 < 𝐸) | |
| 10 | modqmul12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
| 11 | 3, 6, 7, 8, 9, 10 | modqmul1 10486 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) |
| 12 | 4 | zcnd 9466 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 13 | 7 | zcnd 9466 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 14 | 12, 13 | mulcomd 8065 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 15 | 14 | oveq1d 5940 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸)) |
| 16 | zq 9717 | . . . . 5 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℚ) | |
| 17 | 7, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℚ) |
| 18 | modqmul12d.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
| 19 | zq 9717 | . . . . 5 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℚ) | |
| 20 | 18, 19 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℚ) |
| 21 | modqmul12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
| 22 | 17, 20, 4, 8, 9, 21 | modqmul1 10486 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) |
| 23 | 18 | zcnd 9466 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 24 | 23, 12 | mulcomd 8065 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
| 25 | 24 | oveq1d 5940 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| 26 | 15, 22, 25 | 3eqtrd 2233 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| 27 | 11, 26 | eqtrd 2229 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 0cc0 7896 · cmul 7901 < clt 8078 ℤcz 9343 ℚcq 9710 mod cmo 10431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 |
| This theorem is referenced by: modqexp 10775 fprodmodd 11823 modxai 12610 lgsdir2lem5 15357 lgseisenlem2 15396 lgseisenlem3 15397 |
| Copyright terms: Public domain | W3C validator |