Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modqmul12d | GIF version |
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.) |
Ref | Expression |
---|---|
modqmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
modqmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
modqmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
modqmul12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
modqmul12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℚ) |
modqmul12d.egt0 | ⊢ (𝜑 → 0 < 𝐸) |
modqmul12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modqmul12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modqmul12d | ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | zq 9556 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
4 | modqmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
5 | zq 9556 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℚ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) |
7 | modqmul12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
8 | modqmul12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℚ) | |
9 | modqmul12d.egt0 | . . 3 ⊢ (𝜑 → 0 < 𝐸) | |
10 | modqmul12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
11 | 3, 6, 7, 8, 9, 10 | modqmul1 10303 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) |
12 | 4 | zcnd 9306 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
13 | 7 | zcnd 9306 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
14 | 12, 13 | mulcomd 7912 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
15 | 14 | oveq1d 5852 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸)) |
16 | zq 9556 | . . . . 5 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℚ) | |
17 | 7, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℚ) |
18 | modqmul12d.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
19 | zq 9556 | . . . . 5 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℚ) | |
20 | 18, 19 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℚ) |
21 | modqmul12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
22 | 17, 20, 4, 8, 9, 21 | modqmul1 10303 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) |
23 | 18 | zcnd 9306 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
24 | 23, 12 | mulcomd 7912 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
25 | 24 | oveq1d 5852 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
26 | 15, 22, 25 | 3eqtrd 2201 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
27 | 11, 26 | eqtrd 2197 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 class class class wbr 3977 (class class class)co 5837 0cc0 7745 · cmul 7750 < clt 7925 ℤcz 9183 ℚcq 9549 mod cmo 10248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-po 4269 df-iso 4270 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-n0 9107 df-z 9184 df-q 9550 df-rp 9582 df-fl 10196 df-mod 10249 |
This theorem is referenced by: modqexp 10571 fprodmodd 11572 |
Copyright terms: Public domain | W3C validator |