| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqmul12d | GIF version | ||
| Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqmul12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| modqmul12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| modqmul12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| modqmul12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| modqmul12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℚ) |
| modqmul12d.egt0 | ⊢ (𝜑 → 0 < 𝐸) |
| modqmul12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
| modqmul12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
| Ref | Expression |
|---|---|
| modqmul12d | ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqmul12d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | zq 9829 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| 4 | modqmul12d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℤ) | |
| 5 | zq 9829 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℚ) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| 7 | modqmul12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 8 | modqmul12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℚ) | |
| 9 | modqmul12d.egt0 | . . 3 ⊢ (𝜑 → 0 < 𝐸) | |
| 10 | modqmul12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
| 11 | 3, 6, 7, 8, 9, 10 | modqmul1 10607 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸)) |
| 12 | 4 | zcnd 9578 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 13 | 7 | zcnd 9578 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 14 | 12, 13 | mulcomd 8176 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 15 | 14 | oveq1d 6022 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸)) |
| 16 | zq 9829 | . . . . 5 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℚ) | |
| 17 | 7, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℚ) |
| 18 | modqmul12d.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
| 19 | zq 9829 | . . . . 5 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℚ) | |
| 20 | 18, 19 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℚ) |
| 21 | modqmul12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
| 22 | 17, 20, 4, 8, 9, 21 | modqmul1 10607 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸)) |
| 23 | 18 | zcnd 9578 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 24 | 23, 12 | mulcomd 8176 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷)) |
| 25 | 24 | oveq1d 6022 | . . 3 ⊢ (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| 26 | 15, 22, 25 | 3eqtrd 2266 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| 27 | 11, 26 | eqtrd 2262 | 1 ⊢ (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 0cc0 8007 · cmul 8012 < clt 8189 ℤcz 9454 ℚcq 9822 mod cmo 10552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 |
| This theorem is referenced by: modqexp 10896 fprodmodd 12160 modxai 12947 lgsdir2lem5 15719 lgseisenlem2 15758 lgseisenlem3 15759 |
| Copyright terms: Public domain | W3C validator |