ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul12d GIF version

Theorem modqmul12d 10567
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul12d.1 (𝜑𝐴 ∈ ℤ)
modqmul12d.2 (𝜑𝐵 ∈ ℤ)
modqmul12d.3 (𝜑𝐶 ∈ ℤ)
modqmul12d.4 (𝜑𝐷 ∈ ℤ)
modqmul12d.5 (𝜑𝐸 ∈ ℚ)
modqmul12d.egt0 (𝜑 → 0 < 𝐸)
modqmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modqmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modqmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modqmul12d
StepHypRef Expression
1 modqmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
2 zq 9789 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . 3 (𝜑𝐴 ∈ ℚ)
4 modqmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
5 zq 9789 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ ℚ)
64, 5syl 14 . . 3 (𝜑𝐵 ∈ ℚ)
7 modqmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
8 modqmul12d.5 . . 3 (𝜑𝐸 ∈ ℚ)
9 modqmul12d.egt0 . . 3 (𝜑 → 0 < 𝐸)
10 modqmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
113, 6, 7, 8, 9, 10modqmul1 10566 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
124zcnd 9538 . . . . 5 (𝜑𝐵 ∈ ℂ)
137zcnd 9538 . . . . 5 (𝜑𝐶 ∈ ℂ)
1412, 13mulcomd 8136 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1514oveq1d 5989 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
16 zq 9789 . . . . 5 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
177, 16syl 14 . . . 4 (𝜑𝐶 ∈ ℚ)
18 modqmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
19 zq 9789 . . . . 5 (𝐷 ∈ ℤ → 𝐷 ∈ ℚ)
2018, 19syl 14 . . . 4 (𝜑𝐷 ∈ ℚ)
21 modqmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
2217, 20, 4, 8, 9, 21modqmul1 10566 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2318zcnd 9538 . . . . 5 (𝜑𝐷 ∈ ℂ)
2423, 12mulcomd 8136 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2524oveq1d 5989 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2615, 22, 253eqtrd 2246 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2711, 26eqtrd 2242 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  0cc0 7967   · cmul 7972   < clt 8149  cz 9414  cq 9782   mod cmo 10511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512
This theorem is referenced by:  modqexp  10855  fprodmodd  12118  modxai  12905  lgsdir2lem5  15676  lgseisenlem2  15715  lgseisenlem3  15716
  Copyright terms: Public domain W3C validator