| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplplusgg | GIF version | ||
| Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplplusg.y | ⊢ 𝑌 = (𝐼 mPoly 𝑅) |
| mplplusg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplplusg.p | ⊢ + = (+g‘𝑌) |
| Ref | Expression |
|---|---|
| mplplusgg | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → + = (+g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplplusg.p | . 2 ⊢ + = (+g‘𝑌) | |
| 2 | mplplusg.y | . . . 4 ⊢ 𝑌 = (𝐼 mPoly 𝑅) | |
| 3 | mplplusg.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | eqid 2209 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 5 | 2, 3, 4 | mplval2g 14624 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑌 = (𝑆 ↾s (Base‘𝑌))) |
| 6 | eqidd 2210 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (+g‘𝑆) = (+g‘𝑆)) | |
| 7 | basfn 13057 | . . . 4 ⊢ Base Fn V | |
| 8 | fnmpl 14622 | . . . . . 6 ⊢ mPoly Fn (V × V) | |
| 9 | elex 2791 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 10 | elex 2791 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → 𝑅 ∈ V) | |
| 11 | fnovex 6007 | . . . . . 6 ⊢ (( mPoly Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPoly 𝑅) ∈ V) | |
| 12 | 8, 9, 10, 11 | mp3an3an 1358 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPoly 𝑅) ∈ V) |
| 13 | 2, 12 | eqeltrid 2296 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑌 ∈ V) |
| 14 | funfvex 5620 | . . . . 5 ⊢ ((Fun Base ∧ 𝑌 ∈ dom Base) → (Base‘𝑌) ∈ V) | |
| 15 | 14 | funfni 5399 | . . . 4 ⊢ ((Base Fn V ∧ 𝑌 ∈ V) → (Base‘𝑌) ∈ V) |
| 16 | 7, 13, 15 | sylancr 414 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (Base‘𝑌) ∈ V) |
| 17 | fnpsr 14596 | . . . . 5 ⊢ mPwSer Fn (V × V) | |
| 18 | fnovex 6007 | . . . . 5 ⊢ (( mPwSer Fn (V × V) ∧ 𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) ∈ V) | |
| 19 | 17, 9, 10, 18 | mp3an3an 1358 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝐼 mPwSer 𝑅) ∈ V) |
| 20 | 3, 19 | eqeltrid 2296 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑆 ∈ V) |
| 21 | 5, 6, 16, 20 | ressplusgd 13128 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (+g‘𝑆) = (+g‘𝑌)) |
| 22 | 1, 21 | eqtr4id 2261 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → + = (+g‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 × cxp 4694 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 mPwSer cmps 14590 mPoly cmpl 14591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-tset 13095 df-rest 13240 df-topn 13241 df-topgen 13259 df-pt 13260 df-psr 14592 df-mplcoe 14593 |
| This theorem is referenced by: mpladd 14633 |
| Copyright terms: Public domain | W3C validator |