ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulmoddvds Unicode version

Theorem mulmoddvds 11597
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
mulmoddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )

Proof of Theorem mulmoddvds
StepHypRef Expression
1 simp2 983 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
2 zq 9445 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  QQ )
4 simp3 984 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
5 simp1 982 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  NN )
6 nnq 9452 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
75, 6syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  QQ )
85nngt0d 8788 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  0  <  N )
9 modqmulmod 10193 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( A  mod  N )  x.  B )  mod  N
)  =  ( ( A  x.  B )  mod  N ) )
103, 4, 7, 8, 9syl22anc 1218 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( A  mod  N )  x.  B )  mod  N )  =  ( ( A  x.  B )  mod  N
) )
1110eqcomd 2146 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  B
)  mod  N )  =  ( ( ( A  mod  N )  x.  B )  mod 
N ) )
1211adantr 274 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  ( ( ( A  mod  N )  x.  B )  mod  N ) )
13 dvdsval3 11533 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
14133adant3 1002 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
1514biimpa 294 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( A  mod  N )  =  0 )
1615oveq1d 5797 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  mod  N )  x.  B )  =  ( 0  x.  B ) )
1716oveq1d 5797 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  ( ( 0  x.  B
)  mod  N )
)
184adantr 274 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  ZZ )
1918zcnd 9198 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  CC )
2019mul02d 8178 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  x.  B )  =  0 )
2120oveq1d 5797 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  ( 0  mod  N ) )
227adantr 274 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  N  e.  QQ )
238adantr 274 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  0  <  N
)
24 q0mod 10159 . . . . . 6  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
2522, 23, 24syl2anc 409 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  mod 
N )  =  0 )
2621, 25eqtrd 2173 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  0 )
2717, 26eqtrd 2173 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  0 )
2812, 27eqtrd 2173 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  0 )
2928ex 114 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   0cc0 7644    x. cmul 7649    < clt 7824   NNcn 8744   ZZcz 9078   QQcq 9438    mod cmo 10126    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-n0 9002  df-z 9079  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator