ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulmoddvds Unicode version

Theorem mulmoddvds 12340
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
mulmoddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )

Proof of Theorem mulmoddvds
StepHypRef Expression
1 simp2 1003 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
2 zq 9789 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  QQ )
4 simp3 1004 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
5 simp1 1002 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  NN )
6 nnq 9796 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
75, 6syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  QQ )
85nngt0d 9122 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  0  <  N )
9 modqmulmod 10578 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( A  mod  N )  x.  B )  mod  N
)  =  ( ( A  x.  B )  mod  N ) )
103, 4, 7, 8, 9syl22anc 1253 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( A  mod  N )  x.  B )  mod  N )  =  ( ( A  x.  B )  mod  N
) )
1110eqcomd 2215 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  B
)  mod  N )  =  ( ( ( A  mod  N )  x.  B )  mod 
N ) )
1211adantr 276 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  ( ( ( A  mod  N )  x.  B )  mod  N ) )
13 dvdsval3 12268 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
14133adant3 1022 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
1514biimpa 296 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( A  mod  N )  =  0 )
1615oveq1d 5989 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  mod  N )  x.  B )  =  ( 0  x.  B ) )
1716oveq1d 5989 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  ( ( 0  x.  B
)  mod  N )
)
184adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  ZZ )
1918zcnd 9538 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  CC )
2019mul02d 8506 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  x.  B )  =  0 )
2120oveq1d 5989 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  ( 0  mod  N ) )
227adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  N  e.  QQ )
238adantr 276 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  0  <  N
)
24 q0mod 10544 . . . . . 6  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
2522, 23, 24syl2anc 411 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  mod 
N )  =  0 )
2621, 25eqtrd 2242 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  0 )
2717, 26eqtrd 2242 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  0 )
2812, 27eqtrd 2242 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  0 )
2928ex 115 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375    e. wcel 2180   class class class wbr 4062  (class class class)co 5974   0cc0 7967    x. cmul 7972    < clt 8149   NNcn 9078   ZZcz 9414   QQcq 9782    mod cmo 10511    || cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512  df-dvds 12265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator