ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulmoddvds Unicode version

Theorem mulmoddvds 11550
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
mulmoddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )

Proof of Theorem mulmoddvds
StepHypRef Expression
1 simp2 982 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
2 zq 9411 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  QQ )
31, 2syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  QQ )
4 simp3 983 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
5 simp1 981 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  NN )
6 nnq 9418 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
75, 6syl 14 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  N  e.  QQ )
85nngt0d 8757 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  0  <  N )
9 modqmulmod 10155 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( A  mod  N )  x.  B )  mod  N
)  =  ( ( A  x.  B )  mod  N ) )
103, 4, 7, 8, 9syl22anc 1217 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( A  mod  N )  x.  B )  mod  N )  =  ( ( A  x.  B )  mod  N
) )
1110eqcomd 2143 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  x.  B
)  mod  N )  =  ( ( ( A  mod  N )  x.  B )  mod 
N ) )
1211adantr 274 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  ( ( ( A  mod  N )  x.  B )  mod  N ) )
13 dvdsval3 11486 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
14133adant3 1001 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  <->  ( A  mod  N )  =  0 ) )
1514biimpa 294 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( A  mod  N )  =  0 )
1615oveq1d 5782 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  mod  N )  x.  B )  =  ( 0  x.  B ) )
1716oveq1d 5782 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  ( ( 0  x.  B
)  mod  N )
)
184adantr 274 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  ZZ )
1918zcnd 9167 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  B  e.  CC )
2019mul02d 8147 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  x.  B )  =  0 )
2120oveq1d 5782 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  ( 0  mod  N ) )
227adantr 274 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  N  e.  QQ )
238adantr 274 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  0  <  N
)
24 q0mod 10121 . . . . . 6  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
2522, 23, 24syl2anc 408 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( 0  mod 
N )  =  0 )
2621, 25eqtrd 2170 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( 0  x.  B )  mod 
N )  =  0 )
2717, 26eqtrd 2170 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( ( A  mod  N )  x.  B )  mod 
N )  =  0 )
2812, 27eqtrd 2170 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  N  ||  A )  ->  ( ( A  x.  B )  mod 
N )  =  0 )
2928ex 114 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  (
( A  x.  B
)  mod  N )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   0cc0 7613    x. cmul 7618    < clt 7793   NNcn 8713   ZZcz 9047   QQcq 9404    mod cmo 10088    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089  df-dvds 11483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator