![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0d | Unicode version |
Description: A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nngt0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nngt0 8946 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-iota 5180 df-fv 5226 df-ov 5880 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-inn 8922 |
This theorem is referenced by: flqdiv 10323 modqmulnn 10344 modifeq2int 10388 modaddmodup 10389 modaddmodlo 10390 modsumfzodifsn 10398 addmodlteq 10400 facubnd 10727 resqrexlemdecn 11023 modfsummodlemstep 11467 divcnv 11507 cvgratnnlemabsle 11537 fprodmodd 11651 efcllemp 11668 ege2le3 11681 eftlub 11700 eflegeo 11711 eirraplem 11786 dvdslelemd 11851 dvdsmod 11870 mulmoddvds 11871 divalgmod 11934 bezoutlemnewy 11999 bezoutlemstep 12000 sqgcd 12032 eucalglt 12059 qredeu 12099 prmind2 12122 nprm 12125 sqrt2irraplemnn 12181 divdenle 12199 qnumgt0 12200 hashdvds 12223 crth 12226 phimullem 12227 eulerthlema 12232 fermltl 12236 prmdiv 12237 prmdiveq 12238 odzdvds 12247 powm2modprm 12254 modprm0 12256 nnnn0modprm0 12257 pythagtriplem11 12276 pythagtriplem13 12278 pythagtriplem19 12284 pcadd 12341 pcfaclem 12349 qexpz 12352 pockthlem 12356 pockthg 12357 4sqlem5 12382 4sqlem6 12383 4sqlem10 12387 lgsvalmod 14505 lgsmod 14512 lgsdirprm 14520 lgseisenlem1 14535 lgseisenlem2 14536 2sqlem8 14555 |
Copyright terms: Public domain | W3C validator |