![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulmoddvds | GIF version |
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
Ref | Expression |
---|---|
mulmoddvds | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 950 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) | |
2 | zq 9268 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ) |
4 | simp3 951 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
5 | simp1 949 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℕ) | |
6 | nnq 9275 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℚ) |
8 | 5 | nngt0d 8622 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 < 𝑁) |
9 | modqmulmod 10003 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) | |
10 | 3, 4, 7, 8, 9 | syl22anc 1185 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) |
11 | 10 | eqcomd 2105 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
12 | 11 | adantr 272 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
13 | dvdsval3 11292 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) | |
14 | 13 | 3adant3 969 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) |
15 | 14 | biimpa 292 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) |
16 | 15 | oveq1d 5721 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 mod 𝑁) · 𝐵) = (0 · 𝐵)) |
17 | 16 | oveq1d 5721 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((0 · 𝐵) mod 𝑁)) |
18 | 4 | adantr 272 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℤ) |
19 | 18 | zcnd 9026 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℂ) |
20 | 19 | mul02d 8021 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 · 𝐵) = 0) |
21 | 20 | oveq1d 5721 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = (0 mod 𝑁)) |
22 | 7 | adantr 272 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝑁 ∈ ℚ) |
23 | 8 | adantr 272 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 0 < 𝑁) |
24 | q0mod 9969 | . . . . . 6 ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | |
25 | 22, 23, 24 | syl2anc 406 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 mod 𝑁) = 0) |
26 | 21, 25 | eqtrd 2132 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = 0) |
27 | 17, 26 | eqtrd 2132 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = 0) |
28 | 12, 27 | eqtrd 2132 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = 0) |
29 | 28 | ex 114 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 0cc0 7500 · cmul 7505 < clt 7672 ℕcn 8578 ℤcz 8906 ℚcq 9261 mod cmo 9936 ∥ cdvds 11288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-n0 8830 df-z 8907 df-q 9262 df-rp 9292 df-fl 9884 df-mod 9937 df-dvds 11289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |