![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulmoddvds | GIF version |
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
Ref | Expression |
---|---|
mulmoddvds | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) | |
2 | zq 9658 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ) |
4 | simp3 1001 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
5 | simp1 999 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℕ) | |
6 | nnq 9665 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℚ) |
8 | 5 | nngt0d 8994 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 < 𝑁) |
9 | modqmulmod 10422 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) | |
10 | 3, 4, 7, 8, 9 | syl22anc 1250 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) |
11 | 10 | eqcomd 2195 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
12 | 11 | adantr 276 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
13 | dvdsval3 11833 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) | |
14 | 13 | 3adant3 1019 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) |
15 | 14 | biimpa 296 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) |
16 | 15 | oveq1d 5912 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 mod 𝑁) · 𝐵) = (0 · 𝐵)) |
17 | 16 | oveq1d 5912 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((0 · 𝐵) mod 𝑁)) |
18 | 4 | adantr 276 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℤ) |
19 | 18 | zcnd 9407 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℂ) |
20 | 19 | mul02d 8380 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 · 𝐵) = 0) |
21 | 20 | oveq1d 5912 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = (0 mod 𝑁)) |
22 | 7 | adantr 276 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝑁 ∈ ℚ) |
23 | 8 | adantr 276 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 0 < 𝑁) |
24 | q0mod 10388 | . . . . . 6 ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | |
25 | 22, 23, 24 | syl2anc 411 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 mod 𝑁) = 0) |
26 | 21, 25 | eqtrd 2222 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = 0) |
27 | 17, 26 | eqtrd 2222 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = 0) |
28 | 12, 27 | eqtrd 2222 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = 0) |
29 | 28 | ex 115 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 0cc0 7842 · cmul 7847 < clt 8023 ℕcn 8950 ℤcz 9284 ℚcq 9651 mod cmo 10355 ∥ cdvds 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-n0 9208 df-z 9285 df-q 9652 df-rp 9686 df-fl 10303 df-mod 10356 df-dvds 11830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |