ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulmoddvds GIF version

Theorem mulmoddvds 11904
Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
mulmoddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0))

Proof of Theorem mulmoddvds
StepHypRef Expression
1 simp2 1000 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
2 zq 9658 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
31, 2syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ)
4 simp3 1001 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
5 simp1 999 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℕ)
6 nnq 9665 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
75, 6syl 14 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℚ)
85nngt0d 8994 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 < 𝑁)
9 modqmulmod 10422 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁))
103, 4, 7, 8, 9syl22anc 1250 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁))
1110eqcomd 2195 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁))
1211adantr 276 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁))
13 dvdsval3 11833 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴 ↔ (𝐴 mod 𝑁) = 0))
14133adant3 1019 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 ↔ (𝐴 mod 𝑁) = 0))
1514biimpa 296 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (𝐴 mod 𝑁) = 0)
1615oveq1d 5912 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 mod 𝑁) · 𝐵) = (0 · 𝐵))
1716oveq1d 5912 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((0 · 𝐵) mod 𝑁))
184adantr 276 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → 𝐵 ∈ ℤ)
1918zcnd 9407 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → 𝐵 ∈ ℂ)
2019mul02d 8380 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (0 · 𝐵) = 0)
2120oveq1d 5912 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((0 · 𝐵) mod 𝑁) = (0 mod 𝑁))
227adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → 𝑁 ∈ ℚ)
238adantr 276 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → 0 < 𝑁)
24 q0mod 10388 . . . . . 6 ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
2522, 23, 24syl2anc 411 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (0 mod 𝑁) = 0)
2621, 25eqtrd 2222 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((0 · 𝐵) mod 𝑁) = 0)
2717, 26eqtrd 2222 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = 0)
2812, 27eqtrd 2222 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 · 𝐵) mod 𝑁) = 0)
2928ex 115 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160   class class class wbr 4018  (class class class)co 5897  0cc0 7842   · cmul 7847   < clt 8023  cn 8950  cz 9284  cq 9651   mod cmo 10355  cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-n0 9208  df-z 9285  df-q 9652  df-rp 9686  df-fl 10303  df-mod 10356  df-dvds 11830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator