| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulmoddvds | GIF version | ||
| Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
| Ref | Expression |
|---|---|
| mulmoddvds | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 2 | zq 9829 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
| 3 | 1, 2 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℚ) |
| 4 | simp3 1023 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
| 5 | simp1 1021 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℕ) | |
| 6 | nnq 9836 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 7 | 5, 6 | syl 14 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℚ) |
| 8 | 5 | nngt0d 9162 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 < 𝑁) |
| 9 | modqmulmod 10619 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) | |
| 10 | 3, 4, 7, 8, 9 | syl22anc 1272 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁)) |
| 11 | 10 | eqcomd 2235 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
| 12 | 11 | adantr 276 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁)) |
| 13 | dvdsval3 12310 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) | |
| 14 | 13 | 3adant3 1041 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 ↔ (𝐴 mod 𝑁) = 0)) |
| 15 | 14 | biimpa 296 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) |
| 16 | 15 | oveq1d 6022 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 mod 𝑁) · 𝐵) = (0 · 𝐵)) |
| 17 | 16 | oveq1d 6022 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((0 · 𝐵) mod 𝑁)) |
| 18 | 4 | adantr 276 | . . . . . . . 8 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℤ) |
| 19 | 18 | zcnd 9578 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝐵 ∈ ℂ) |
| 20 | 19 | mul02d 8546 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 · 𝐵) = 0) |
| 21 | 20 | oveq1d 6022 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = (0 mod 𝑁)) |
| 22 | 7 | adantr 276 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 𝑁 ∈ ℚ) |
| 23 | 8 | adantr 276 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → 0 < 𝑁) |
| 24 | q0mod 10585 | . . . . . 6 ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | |
| 25 | 22, 23, 24 | syl2anc 411 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (0 mod 𝑁) = 0) |
| 26 | 21, 25 | eqtrd 2262 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((0 · 𝐵) mod 𝑁) = 0) |
| 27 | 17, 26 | eqtrd 2262 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = 0) |
| 28 | 12, 27 | eqtrd 2262 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁 ∥ 𝐴) → ((𝐴 · 𝐵) mod 𝑁) = 0) |
| 29 | 28 | ex 115 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 0cc0 8007 · cmul 8012 < clt 8189 ℕcn 9118 ℤcz 9454 ℚcq 9822 mod cmo 10552 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 df-dvds 12307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |