ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivtr Unicode version

Theorem nndivtr 8932
Description: Transitive property of divisibility: if  A divides  B and  B divides  C, then  A divides  C. Typically,  C would be an integer, although the theorem holds for complex  C. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 8911 . . 3  |-  ( ( ( B  /  A
)  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  e.  NN )
2 nncn 8898 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
323ad2ant2 1019 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  B  e.  CC )
4 simp3 999 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  C  e.  CC )
5 nncn 8898 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
6 nnap0 8919 . . . . . . . 8  |-  ( A  e.  NN  ->  A #  0 )
75, 6jca 306 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  e.  CC  /\  A #  0 ) )
873ad2ant1 1018 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( A  e.  CC  /\  A #  0 ) )
9 nnap0 8919 . . . . . . . 8  |-  ( B  e.  NN  ->  B #  0 )
102, 9jca 306 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
11103ad2ant2 1019 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( B  e.  CC  /\  B #  0 ) )
12 divmul24ap 8645 . . . . . 6  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) ) )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  =  ( ( B  /  B
)  x.  ( C  /  A ) ) )
133, 4, 8, 11, 12syl22anc 1239 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( ( B  /  B )  x.  ( C  /  A
) ) )
142, 9dividapd 8715 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  /  B )  =  1 )
1514oveq1d 5880 . . . . . 6  |-  ( B  e.  NN  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
16153ad2ant2 1019 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
17 divclap 8607 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A #  0 )  ->  ( C  /  A )  e.  CC )
18173expb 1204 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( C  /  A )  e.  CC )
197, 18sylan2 286 . . . . . . . 8  |-  ( ( C  e.  CC  /\  A  e.  NN )  ->  ( C  /  A
)  e.  CC )
2019ancoms 268 . . . . . . 7  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( C  /  A
)  e.  CC )
2120mulid2d 7950 . . . . . 6  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( 1  x.  ( C  /  A ) )  =  ( C  /  A ) )
22213adant2 1016 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
1  x.  ( C  /  A ) )  =  ( C  /  A ) )
2313, 16, 223eqtrd 2212 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( C  /  A ) )
2423eleq1d 2244 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  x.  ( C  /  B ) )  e.  NN  <->  ( C  /  A )  e.  NN ) )
251, 24syl5ib 154 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( C  /  A )  e.  NN ) )
2625imp 124 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   0cc0 7786   1c1 7787    x. cmul 7791   # cap 8512    / cdiv 8601   NNcn 8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891
This theorem is referenced by:  permnn  10717  infpnlem1  12322
  Copyright terms: Public domain W3C validator