ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivtr Unicode version

Theorem nndivtr 9152
Description: Transitive property of divisibility: if  A divides  B and  B divides  C, then  A divides  C. Typically,  C would be an integer, although the theorem holds for complex  C. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 9131 . . 3  |-  ( ( ( B  /  A
)  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  e.  NN )
2 nncn 9118 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
323ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  B  e.  CC )
4 simp3 1023 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  C  e.  CC )
5 nncn 9118 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
6 nnap0 9139 . . . . . . . 8  |-  ( A  e.  NN  ->  A #  0 )
75, 6jca 306 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  e.  CC  /\  A #  0 ) )
873ad2ant1 1042 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( A  e.  CC  /\  A #  0 ) )
9 nnap0 9139 . . . . . . . 8  |-  ( B  e.  NN  ->  B #  0 )
102, 9jca 306 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
11103ad2ant2 1043 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( B  e.  CC  /\  B #  0 ) )
12 divmul24ap 8863 . . . . . 6  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) ) )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  =  ( ( B  /  B
)  x.  ( C  /  A ) ) )
133, 4, 8, 11, 12syl22anc 1272 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( ( B  /  B )  x.  ( C  /  A
) ) )
142, 9dividapd 8933 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  /  B )  =  1 )
1514oveq1d 6016 . . . . . 6  |-  ( B  e.  NN  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
16153ad2ant2 1043 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
17 divclap 8825 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A #  0 )  ->  ( C  /  A )  e.  CC )
18173expb 1228 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( C  /  A )  e.  CC )
197, 18sylan2 286 . . . . . . . 8  |-  ( ( C  e.  CC  /\  A  e.  NN )  ->  ( C  /  A
)  e.  CC )
2019ancoms 268 . . . . . . 7  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( C  /  A
)  e.  CC )
2120mulid2d 8165 . . . . . 6  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( 1  x.  ( C  /  A ) )  =  ( C  /  A ) )
22213adant2 1040 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
1  x.  ( C  /  A ) )  =  ( C  /  A ) )
2313, 16, 223eqtrd 2266 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( C  /  A ) )
2423eleq1d 2298 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  x.  ( C  /  B ) )  e.  NN  <->  ( C  /  A )  e.  NN ) )
251, 24imbitrid 154 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( C  /  A )  e.  NN ) )
2625imp 124 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    x. cmul 8004   # cap 8728    / cdiv 8819   NNcn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111
This theorem is referenced by:  permnn  10993  infpnlem1  12882
  Copyright terms: Public domain W3C validator