ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivtr Unicode version

Theorem nndivtr 8920
Description: Transitive property of divisibility: if  A divides  B and  B divides  C, then  A divides  C. Typically,  C would be an integer, although the theorem holds for complex  C. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 8899 . . 3  |-  ( ( ( B  /  A
)  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  e.  NN )
2 nncn 8886 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
323ad2ant2 1014 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  B  e.  CC )
4 simp3 994 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  C  e.  CC )
5 nncn 8886 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
6 nnap0 8907 . . . . . . . 8  |-  ( A  e.  NN  ->  A #  0 )
75, 6jca 304 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  e.  CC  /\  A #  0 ) )
873ad2ant1 1013 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( A  e.  CC  /\  A #  0 ) )
9 nnap0 8907 . . . . . . . 8  |-  ( B  e.  NN  ->  B #  0 )
102, 9jca 304 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
11103ad2ant2 1014 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( B  e.  CC  /\  B #  0 ) )
12 divmul24ap 8633 . . . . . 6  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) ) )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  =  ( ( B  /  B
)  x.  ( C  /  A ) ) )
133, 4, 8, 11, 12syl22anc 1234 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( ( B  /  B )  x.  ( C  /  A
) ) )
142, 9dividapd 8703 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  /  B )  =  1 )
1514oveq1d 5868 . . . . . 6  |-  ( B  e.  NN  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
16153ad2ant2 1014 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
17 divclap 8595 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A #  0 )  ->  ( C  /  A )  e.  CC )
18173expb 1199 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( C  /  A )  e.  CC )
197, 18sylan2 284 . . . . . . . 8  |-  ( ( C  e.  CC  /\  A  e.  NN )  ->  ( C  /  A
)  e.  CC )
2019ancoms 266 . . . . . . 7  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( C  /  A
)  e.  CC )
2120mulid2d 7938 . . . . . 6  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( 1  x.  ( C  /  A ) )  =  ( C  /  A ) )
22213adant2 1011 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
1  x.  ( C  /  A ) )  =  ( C  /  A ) )
2313, 16, 223eqtrd 2207 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( C  /  A ) )
2423eleq1d 2239 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  x.  ( C  /  B ) )  e.  NN  <->  ( C  /  A )  e.  NN ) )
251, 24syl5ib 153 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( C  /  A )  e.  NN ) )
2625imp 123 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    x. cmul 7779   # cap 8500    / cdiv 8589   NNcn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879
This theorem is referenced by:  permnn  10705  infpnlem1  12311
  Copyright terms: Public domain W3C validator