Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndivtr | Unicode version |
Description: Transitive property of divisibility: if divides and divides , then divides . Typically, would be an integer, although the theorem holds for complex . (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
nndivtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmulcl 8911 | . . 3 | |
2 | nncn 8898 | . . . . . . 7 | |
3 | 2 | 3ad2ant2 1019 | . . . . . 6 |
4 | simp3 999 | . . . . . 6 | |
5 | nncn 8898 | . . . . . . . 8 | |
6 | nnap0 8919 | . . . . . . . 8 # | |
7 | 5, 6 | jca 306 | . . . . . . 7 # |
8 | 7 | 3ad2ant1 1018 | . . . . . 6 # |
9 | nnap0 8919 | . . . . . . . 8 # | |
10 | 2, 9 | jca 306 | . . . . . . 7 # |
11 | 10 | 3ad2ant2 1019 | . . . . . 6 # |
12 | divmul24ap 8645 | . . . . . 6 # # | |
13 | 3, 4, 8, 11, 12 | syl22anc 1239 | . . . . 5 |
14 | 2, 9 | dividapd 8715 | . . . . . . 7 |
15 | 14 | oveq1d 5880 | . . . . . 6 |
16 | 15 | 3ad2ant2 1019 | . . . . 5 |
17 | divclap 8607 | . . . . . . . . . 10 # | |
18 | 17 | 3expb 1204 | . . . . . . . . 9 # |
19 | 7, 18 | sylan2 286 | . . . . . . . 8 |
20 | 19 | ancoms 268 | . . . . . . 7 |
21 | 20 | mulid2d 7950 | . . . . . 6 |
22 | 21 | 3adant2 1016 | . . . . 5 |
23 | 13, 16, 22 | 3eqtrd 2212 | . . . 4 |
24 | 23 | eleq1d 2244 | . . 3 |
25 | 1, 24 | syl5ib 154 | . 2 |
26 | 25 | imp 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc 7784 cc0 7786 c1 7787 cmul 7791 # cap 8512 cdiv 8601 cn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 |
This theorem is referenced by: permnn 10717 infpnlem1 12322 |
Copyright terms: Public domain | W3C validator |