ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivtr Unicode version

Theorem nndivtr 8666
Description: Transitive property of divisibility: if  A divides  B and  B divides  C, then  A divides  C. Typically,  C would be an integer, although the theorem holds for complex  C. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
nndivtr  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )

Proof of Theorem nndivtr
StepHypRef Expression
1 nnmulcl 8645 . . 3  |-  ( ( ( B  /  A
)  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  e.  NN )
2 nncn 8632 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
323ad2ant2 984 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  B  e.  CC )
4 simp3 964 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  C  e.  CC )
5 nncn 8632 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
6 nnap0 8653 . . . . . . . 8  |-  ( A  e.  NN  ->  A #  0 )
75, 6jca 302 . . . . . . 7  |-  ( A  e.  NN  ->  ( A  e.  CC  /\  A #  0 ) )
873ad2ant1 983 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( A  e.  CC  /\  A #  0 ) )
9 nnap0 8653 . . . . . . . 8  |-  ( B  e.  NN  ->  B #  0 )
102, 9jca 302 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  e.  CC  /\  B #  0 ) )
11103ad2ant2 984 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  ( B  e.  CC  /\  B #  0 ) )
12 divmul24ap 8383 . . . . . 6  |-  ( ( ( B  e.  CC  /\  C  e.  CC )  /\  ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) ) )  ->  ( ( B  /  A )  x.  ( C  /  B
) )  =  ( ( B  /  B
)  x.  ( C  /  A ) ) )
133, 4, 8, 11, 12syl22anc 1198 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( ( B  /  B )  x.  ( C  /  A
) ) )
142, 9dividapd 8453 . . . . . . 7  |-  ( B  e.  NN  ->  ( B  /  B )  =  1 )
1514oveq1d 5741 . . . . . 6  |-  ( B  e.  NN  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
16153ad2ant2 984 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  B
)  x.  ( C  /  A ) )  =  ( 1  x.  ( C  /  A
) ) )
17 divclap 8345 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  A #  0 )  ->  ( C  /  A )  e.  CC )
18173expb 1163 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  ( A  e.  CC  /\  A #  0 ) )  ->  ( C  /  A )  e.  CC )
197, 18sylan2 282 . . . . . . . 8  |-  ( ( C  e.  CC  /\  A  e.  NN )  ->  ( C  /  A
)  e.  CC )
2019ancoms 266 . . . . . . 7  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( C  /  A
)  e.  CC )
2120mulid2d 7702 . . . . . 6  |-  ( ( A  e.  NN  /\  C  e.  CC )  ->  ( 1  x.  ( C  /  A ) )  =  ( C  /  A ) )
22213adant2 981 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
1  x.  ( C  /  A ) )  =  ( C  /  A ) )
2313, 16, 223eqtrd 2149 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( B  /  A
)  x.  ( C  /  B ) )  =  ( C  /  A ) )
2423eleq1d 2181 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  x.  ( C  /  B ) )  e.  NN  <->  ( C  /  A )  e.  NN ) )
251, 24syl5ib 153 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  ->  (
( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN )  ->  ( C  /  A )  e.  NN ) )
2625imp 123 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  CC )  /\  ( ( B  /  A )  e.  NN  /\  ( C  /  B
)  e.  NN ) )  ->  ( C  /  A )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 943    = wceq 1312    e. wcel 1461   class class class wbr 3893  (class class class)co 5726   CCcc 7539   0cc0 7541   1c1 7542    x. cmul 7546   # cap 8255    / cdiv 8339   NNcn 8624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625
This theorem is referenced by:  permnn  10404
  Copyright terms: Public domain W3C validator