| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1d | GIF version | ||
| Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnge1d | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnge1 9129 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 1 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 1c1 7996 ≤ cle 8178 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 |
| This theorem is referenced by: exbtwnzlemstep 10462 addmodlteq 10615 bernneq3 10879 facwordi 10957 faclbnd 10958 faclbnd3 10960 facavg 10963 bcval5 10980 1elfz0hash 11023 seq3coll 11059 wrdind 11249 wrd2ind 11250 fsumcl2lem 11904 eftlub 12196 eflegeo 12207 eirraplem 12283 isprm5lem 12658 divdenle 12714 eulerthlemrprm 12746 eulerthlema 12747 infpnlem2 12878 4sqlem11 12919 4sqlem12 12920 2expltfac 12957 nninfdclemlt 13017 psrbaglesuppg 14630 logbgcd1irraplemexp 15636 perfectlem2 15668 lgsdir 15708 lgsdilem2 15709 lgseisenlem1 15743 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |