Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnge1d | GIF version |
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnge1d | ⊢ (𝜑 → 1 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnge1 8901 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 1 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 1c1 7775 ≤ cle 7955 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 |
This theorem is referenced by: exbtwnzlemstep 10204 addmodlteq 10354 bernneq3 10598 facwordi 10674 faclbnd 10675 faclbnd3 10677 facavg 10680 bcval5 10697 1elfz0hash 10741 seq3coll 10777 fsumcl2lem 11361 eftlub 11653 eflegeo 11664 eirraplem 11739 isprm5lem 12095 divdenle 12151 eulerthlemrprm 12183 eulerthlema 12184 infpnlem2 12312 nninfdclemlt 12406 logbgcd1irraplemexp 13680 lgsdir 13730 lgsdilem2 13731 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |