| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1d | GIF version | ||
| Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnge1d | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnge1 9079 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 1 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 1c1 7946 ≤ cle 8128 ℕcn 9056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-inn 9057 |
| This theorem is referenced by: exbtwnzlemstep 10412 addmodlteq 10565 bernneq3 10829 facwordi 10907 faclbnd 10908 faclbnd3 10910 facavg 10913 bcval5 10930 1elfz0hash 10973 seq3coll 11009 wrdind 11198 wrd2ind 11199 fsumcl2lem 11784 eftlub 12076 eflegeo 12087 eirraplem 12163 isprm5lem 12538 divdenle 12594 eulerthlemrprm 12626 eulerthlema 12627 infpnlem2 12758 4sqlem11 12799 4sqlem12 12800 2expltfac 12837 nninfdclemlt 12897 psrbaglesuppg 14509 logbgcd1irraplemexp 15515 perfectlem2 15547 lgsdir 15587 lgsdilem2 15588 lgseisenlem1 15622 2sqlem8 15675 |
| Copyright terms: Public domain | W3C validator |