| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnge1d | GIF version | ||
| Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| nnge1d | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | nnge1 9016 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 1 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 1c1 7883 ≤ cle 8065 ℕcn 8993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1re 7976 ax-addrcl 7979 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-pre-ltirr 7994 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-inn 8994 |
| This theorem is referenced by: exbtwnzlemstep 10340 addmodlteq 10493 bernneq3 10757 facwordi 10835 faclbnd 10836 faclbnd3 10838 facavg 10841 bcval5 10858 1elfz0hash 10901 seq3coll 10937 fsumcl2lem 11566 eftlub 11858 eflegeo 11869 eirraplem 11945 isprm5lem 12320 divdenle 12376 eulerthlemrprm 12408 eulerthlema 12409 infpnlem2 12540 4sqlem11 12581 4sqlem12 12582 2expltfac 12619 nninfdclemlt 12679 psrbaglesuppg 14252 logbgcd1irraplemexp 15230 perfectlem2 15262 lgsdir 15302 lgsdilem2 15303 lgseisenlem1 15337 2sqlem8 15390 |
| Copyright terms: Public domain | W3C validator |