![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnge1d | GIF version |
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnge1d | ⊢ (𝜑 → 1 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnge1 9005 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 1 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 1c1 7873 ≤ cle 8055 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 |
This theorem is referenced by: exbtwnzlemstep 10316 addmodlteq 10469 bernneq3 10733 facwordi 10811 faclbnd 10812 faclbnd3 10814 facavg 10817 bcval5 10834 1elfz0hash 10877 seq3coll 10913 fsumcl2lem 11541 eftlub 11833 eflegeo 11844 eirraplem 11920 isprm5lem 12279 divdenle 12335 eulerthlemrprm 12367 eulerthlema 12368 infpnlem2 12498 4sqlem11 12539 4sqlem12 12540 nninfdclemlt 12608 psrbaglesuppg 14158 logbgcd1irraplemexp 15100 lgsdir 15151 lgsdilem2 15152 lgseisenlem1 15186 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |