ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d GIF version

Theorem nnge1d 8859
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnge1d (𝜑 → 1 ≤ 𝐴)

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnge1 8839 . 2 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
31, 2syl 14 1 (𝜑 → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2128   class class class wbr 3965  1c1 7716  cle 7896  cn 8816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1re 7809  ax-addrcl 7812  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-pre-ltirr 7827  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-xp 4589  df-cnv 4591  df-iota 5132  df-fv 5175  df-ov 5821  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-inn 8817
This theorem is referenced by:  exbtwnzlemstep  10129  addmodlteq  10279  bernneq3  10522  facwordi  10596  faclbnd  10597  faclbnd3  10599  facavg  10602  bcval5  10619  1elfz0hash  10662  seq3coll  10695  fsumcl2lem  11277  eftlub  11569  eflegeo  11580  eirraplem  11655  divdenle  12051  eulerthlemrprm  12081  eulerthlema  12082  logbgcd1irraplemexp  13245
  Copyright terms: Public domain W3C validator