ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d GIF version

Theorem nnge1d 9052
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnge1d (𝜑 → 1 ≤ 𝐴)

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnge1 9032 . 2 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
31, 2syl 14 1 (𝜑 → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4034  1c1 7899  cle 8081  cn 9009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5928  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-inn 9010
This theorem is referenced by:  exbtwnzlemstep  10356  addmodlteq  10509  bernneq3  10773  facwordi  10851  faclbnd  10852  faclbnd3  10854  facavg  10857  bcval5  10874  1elfz0hash  10917  seq3coll  10953  fsumcl2lem  11582  eftlub  11874  eflegeo  11885  eirraplem  11961  isprm5lem  12336  divdenle  12392  eulerthlemrprm  12424  eulerthlema  12425  infpnlem2  12556  4sqlem11  12597  4sqlem12  12598  2expltfac  12635  nninfdclemlt  12695  psrbaglesuppg  14306  logbgcd1irraplemexp  15312  perfectlem2  15344  lgsdir  15384  lgsdilem2  15385  lgseisenlem1  15419  2sqlem8  15472
  Copyright terms: Public domain W3C validator