ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d GIF version

Theorem nnge1d 9033
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnge1d (𝜑 → 1 ≤ 𝐴)

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnge1 9013 . 2 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
31, 2syl 14 1 (𝜑 → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4033  1c1 7880  cle 8062  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991
This theorem is referenced by:  exbtwnzlemstep  10337  addmodlteq  10490  bernneq3  10754  facwordi  10832  faclbnd  10833  faclbnd3  10835  facavg  10838  bcval5  10855  1elfz0hash  10898  seq3coll  10934  fsumcl2lem  11563  eftlub  11855  eflegeo  11866  eirraplem  11942  isprm5lem  12309  divdenle  12365  eulerthlemrprm  12397  eulerthlema  12398  infpnlem2  12529  4sqlem11  12570  4sqlem12  12571  2expltfac  12608  nninfdclemlt  12668  psrbaglesuppg  14226  logbgcd1irraplemexp  15204  perfectlem2  15236  lgsdir  15276  lgsdilem2  15277  lgseisenlem1  15311  2sqlem8  15364
  Copyright terms: Public domain W3C validator