ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1d GIF version

Theorem nnge1d 9061
Description: A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
nnge1d (𝜑 → 1 ≤ 𝐴)

Proof of Theorem nnge1d
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnge1 9041 . 2 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
31, 2syl 14 1 (𝜑 → 1 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175   class class class wbr 4043  1c1 7908  cle 8090  cn 9018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-xp 4679  df-cnv 4681  df-iota 5229  df-fv 5276  df-ov 5937  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-inn 9019
This theorem is referenced by:  exbtwnzlemstep  10371  addmodlteq  10524  bernneq3  10788  facwordi  10866  faclbnd  10867  faclbnd3  10869  facavg  10872  bcval5  10889  1elfz0hash  10932  seq3coll  10968  fsumcl2lem  11628  eftlub  11920  eflegeo  11931  eirraplem  12007  isprm5lem  12382  divdenle  12438  eulerthlemrprm  12470  eulerthlema  12471  infpnlem2  12602  4sqlem11  12643  4sqlem12  12644  2expltfac  12681  nninfdclemlt  12741  psrbaglesuppg  14352  logbgcd1irraplemexp  15358  perfectlem2  15390  lgsdir  15430  lgsdilem2  15431  lgseisenlem1  15465  2sqlem8  15518
  Copyright terms: Public domain W3C validator