ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg GIF version

Theorem opprdomnbg 13840
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13841. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomnbg (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))

Proof of Theorem opprdomnbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
21opprnzrbg 13751 . . 3 (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
3 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
41, 3opprbasg 13641 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 vex 2766 . . . . . . . . . 10 𝑦 ∈ V
6 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
7 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2196 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
93, 7, 1, 8opprmulg 13637 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
105, 6, 9mp3an23 1340 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1110eqcomd 2202 . . . . . . . 8 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑂)𝑥))
12 eqid 2196 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
131, 12oppr0g 13647 . . . . . . . 8 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
1411, 13eqeq12d 2211 . . . . . . 7 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑂)𝑥) = (0g𝑂)))
1513eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g𝑂)))
1613eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g𝑂)))
1715, 16orbi12d 794 . . . . . . . 8 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂))))
18 orcom 729 . . . . . . . 8 ((𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))
1917, 18bitrdi 196 . . . . . . 7 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2014, 19imbi12d 234 . . . . . 6 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
214, 20raleqbidv 2709 . . . . 5 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
224, 21raleqbidv 2709 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
23 ralcom 2660 . . . 4 (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2422, 23bitrdi 196 . . 3 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
252, 24anbi12d 473 . 2 (𝑅𝑉 → ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))))
263, 7, 12isdomn 13835 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
27 eqid 2196 . . 3 (Base‘𝑂) = (Base‘𝑂)
28 eqid 2196 . . 3 (0g𝑂) = (0g𝑂)
2927, 8, 28isdomn 13835 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
3025, 26, 293bitr4g 223 1 (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5259  (class class class)co 5923  Basecbs 12688  .rcmulr 12766  0gc0g 12937  opprcoppr 13633  NzRingcnzr 13745  Domncdomn 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-tpos 6304  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-mgp 13487  df-ur 13526  df-ring 13564  df-oppr 13634  df-nzr 13746  df-domn 13825
This theorem is referenced by:  opprdomn  13841
  Copyright terms: Public domain W3C validator