ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg GIF version

Theorem opprdomnbg 13908
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13909. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomnbg (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))

Proof of Theorem opprdomnbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
21opprnzrbg 13819 . . 3 (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
3 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
41, 3opprbasg 13709 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 vex 2766 . . . . . . . . . 10 𝑦 ∈ V
6 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
7 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2196 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
93, 7, 1, 8opprmulg 13705 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
105, 6, 9mp3an23 1340 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1110eqcomd 2202 . . . . . . . 8 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑂)𝑥))
12 eqid 2196 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
131, 12oppr0g 13715 . . . . . . . 8 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
1411, 13eqeq12d 2211 . . . . . . 7 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑂)𝑥) = (0g𝑂)))
1513eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g𝑂)))
1613eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g𝑂)))
1715, 16orbi12d 794 . . . . . . . 8 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂))))
18 orcom 729 . . . . . . . 8 ((𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))
1917, 18bitrdi 196 . . . . . . 7 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2014, 19imbi12d 234 . . . . . 6 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
214, 20raleqbidv 2709 . . . . 5 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
224, 21raleqbidv 2709 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
23 ralcom 2660 . . . 4 (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2422, 23bitrdi 196 . . 3 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
252, 24anbi12d 473 . 2 (𝑅𝑉 → ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))))
263, 7, 12isdomn 13903 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
27 eqid 2196 . . 3 (Base‘𝑂) = (Base‘𝑂)
28 eqid 2196 . . 3 (0g𝑂) = (0g𝑂)
2927, 8, 28isdomn 13903 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
3025, 26, 293bitr4g 223 1 (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5259  (class class class)co 5925  Basecbs 12705  .rcmulr 12783  0gc0g 12960  opprcoppr 13701  NzRingcnzr 13813  Domncdomn 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-mgp 13555  df-ur 13594  df-ring 13632  df-oppr 13702  df-nzr 13814  df-domn 13893
This theorem is referenced by:  opprdomn  13909
  Copyright terms: Public domain W3C validator