ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg GIF version

Theorem opprdomnbg 14223
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14224. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomnbg (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))

Proof of Theorem opprdomnbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
21opprnzrbg 14134 . . 3 (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
3 eqid 2229 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
41, 3opprbasg 14024 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 vex 2802 . . . . . . . . . 10 𝑦 ∈ V
6 vex 2802 . . . . . . . . . 10 𝑥 ∈ V
7 eqid 2229 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2229 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
93, 7, 1, 8opprmulg 14020 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
105, 6, 9mp3an23 1363 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1110eqcomd 2235 . . . . . . . 8 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑂)𝑥))
12 eqid 2229 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
131, 12oppr0g 14030 . . . . . . . 8 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
1411, 13eqeq12d 2244 . . . . . . 7 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑂)𝑥) = (0g𝑂)))
1513eqeq2d 2241 . . . . . . . . 9 (𝑅𝑉 → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g𝑂)))
1613eqeq2d 2241 . . . . . . . . 9 (𝑅𝑉 → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g𝑂)))
1715, 16orbi12d 798 . . . . . . . 8 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂))))
18 orcom 733 . . . . . . . 8 ((𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))
1917, 18bitrdi 196 . . . . . . 7 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2014, 19imbi12d 234 . . . . . 6 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
214, 20raleqbidv 2744 . . . . 5 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
224, 21raleqbidv 2744 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
23 ralcom 2694 . . . 4 (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2422, 23bitrdi 196 . . 3 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
252, 24anbi12d 473 . 2 (𝑅𝑉 → ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))))
263, 7, 12isdomn 14218 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
27 eqid 2229 . . 3 (Base‘𝑂) = (Base‘𝑂)
28 eqid 2229 . . 3 (0g𝑂) = (0g𝑂)
2927, 8, 28isdomn 14218 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
3025, 26, 293bitr4g 223 1 (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cfv 5314  (class class class)co 5994  Basecbs 13018  .rcmulr 13097  0gc0g 13275  opprcoppr 14016  NzRingcnzr 14128  Domncdomn 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-mgp 13870  df-ur 13909  df-ring 13947  df-oppr 14017  df-nzr 14129  df-domn 14208
This theorem is referenced by:  opprdomn  14224
  Copyright terms: Public domain W3C validator