ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg GIF version

Theorem opprdomnbg 13806
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 13807. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomnbg (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))

Proof of Theorem opprdomnbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
21opprnzrbg 13717 . . 3 (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
3 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
41, 3opprbasg 13607 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 vex 2766 . . . . . . . . . 10 𝑦 ∈ V
6 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
7 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2196 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
93, 7, 1, 8opprmulg 13603 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
105, 6, 9mp3an23 1340 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1110eqcomd 2202 . . . . . . . 8 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑂)𝑥))
12 eqid 2196 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
131, 12oppr0g 13613 . . . . . . . 8 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
1411, 13eqeq12d 2211 . . . . . . 7 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑂)𝑥) = (0g𝑂)))
1513eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g𝑂)))
1613eqeq2d 2208 . . . . . . . . 9 (𝑅𝑉 → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g𝑂)))
1715, 16orbi12d 794 . . . . . . . 8 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂))))
18 orcom 729 . . . . . . . 8 ((𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))
1917, 18bitrdi 196 . . . . . . 7 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2014, 19imbi12d 234 . . . . . 6 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
214, 20raleqbidv 2709 . . . . 5 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
224, 21raleqbidv 2709 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
23 ralcom 2660 . . . 4 (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2422, 23bitrdi 196 . . 3 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
252, 24anbi12d 473 . 2 (𝑅𝑉 → ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))))
263, 7, 12isdomn 13801 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
27 eqid 2196 . . 3 (Base‘𝑂) = (Base‘𝑂)
28 eqid 2196 . . 3 (0g𝑂) = (0g𝑂)
2927, 8, 28isdomn 13801 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
3025, 26, 293bitr4g 223 1 (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5258  (class class class)co 5922  Basecbs 12654  .rcmulr 12732  0gc0g 12903  opprcoppr 13599  NzRingcnzr 13711  Domncdomn 13788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-plusg 12744  df-mulr 12745  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-mgp 13453  df-ur 13492  df-ring 13530  df-oppr 13600  df-nzr 13712  df-domn 13791
This theorem is referenced by:  opprdomn  13807
  Copyright terms: Public domain W3C validator