ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprdomnbg GIF version

Theorem opprdomnbg 14086
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn 14087. (Contributed by SN, 15-Jun-2015.)
Hypothesis
Ref Expression
opprdomn.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprdomnbg (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))

Proof of Theorem opprdomnbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprdomn.1 . . . 4 𝑂 = (oppr𝑅)
21opprnzrbg 13997 . . 3 (𝑅𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing))
3 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
41, 3opprbasg 13887 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
5 vex 2776 . . . . . . . . . 10 𝑦 ∈ V
6 vex 2776 . . . . . . . . . 10 𝑥 ∈ V
7 eqid 2206 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 eqid 2206 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
93, 7, 1, 8opprmulg 13883 . . . . . . . . . 10 ((𝑅𝑉𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
105, 6, 9mp3an23 1342 . . . . . . . . 9 (𝑅𝑉 → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
1110eqcomd 2212 . . . . . . . 8 (𝑅𝑉 → (𝑥(.r𝑅)𝑦) = (𝑦(.r𝑂)𝑥))
12 eqid 2206 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
131, 12oppr0g 13893 . . . . . . . 8 (𝑅𝑉 → (0g𝑅) = (0g𝑂))
1411, 13eqeq12d 2221 . . . . . . 7 (𝑅𝑉 → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑦(.r𝑂)𝑥) = (0g𝑂)))
1513eqeq2d 2218 . . . . . . . . 9 (𝑅𝑉 → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g𝑂)))
1613eqeq2d 2218 . . . . . . . . 9 (𝑅𝑉 → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g𝑂)))
1715, 16orbi12d 795 . . . . . . . 8 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂))))
18 orcom 730 . . . . . . . 8 ((𝑥 = (0g𝑂) ∨ 𝑦 = (0g𝑂)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))
1917, 18bitrdi 196 . . . . . . 7 (𝑅𝑉 → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2014, 19imbi12d 234 . . . . . 6 (𝑅𝑉 → (((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
214, 20raleqbidv 2719 . . . . 5 (𝑅𝑉 → (∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
224, 21raleqbidv 2719 . . . 4 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
23 ralcom 2670 . . . 4 (∀𝑥 ∈ (Base‘𝑂)∀𝑦 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))
2422, 23bitrdi 196 . . 3 (𝑅𝑉 → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))) ↔ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
252, 24anbi12d 473 . 2 (𝑅𝑉 → ((𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))) ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂))))))
263, 7, 12isdomn 14081 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) = (0g𝑅) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))))
27 eqid 2206 . . 3 (Base‘𝑂) = (Base‘𝑂)
28 eqid 2206 . . 3 (0g𝑂) = (0g𝑂)
2927, 8, 28isdomn 14081 . 2 (𝑂 ∈ Domn ↔ (𝑂 ∈ NzRing ∧ ∀𝑦 ∈ (Base‘𝑂)∀𝑥 ∈ (Base‘𝑂)((𝑦(.r𝑂)𝑥) = (0g𝑂) → (𝑦 = (0g𝑂) ∨ 𝑥 = (0g𝑂)))))
3025, 26, 293bitr4g 223 1 (𝑅𝑉 → (𝑅 ∈ Domn ↔ 𝑂 ∈ Domn))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  cfv 5277  (class class class)co 5954  Basecbs 12882  .rcmulr 12960  0gc0g 13138  opprcoppr 13879  NzRingcnzr 13991  Domncdomn 14068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-tpos 6341  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-mgp 13733  df-ur 13772  df-ring 13810  df-oppr 13880  df-nzr 13992  df-domn 14071
This theorem is referenced by:  opprdomn  14087
  Copyright terms: Public domain W3C validator