ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng Unicode version

Theorem isridlrng 14440
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridlrng.b  |-  B  =  ( Base `  R
)
isridlrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridlrng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2229 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 14035 . . 3  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
31opprsubgg 14042 . . . . 5  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
43eleq2d 2299 . . . 4  |-  ( R  e. Rng  ->  ( I  e.  (SubGrp `  R )  <->  I  e.  (SubGrp `  (oppr `  R
) ) ) )
54biimpa 296 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  I  e.  (SubGrp `  (oppr
`  R ) ) )
6 isridlrng.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
7 eqid 2229 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
8 eqid 2229 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
96, 7, 8dflidl2rng 14439 . . 3  |-  ( ( (oppr
`  R )  e. Rng  /\  I  e.  (SubGrp `  (oppr
`  R ) ) )  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
102, 5, 9syl2an2r 597 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
11 isridlrng.b . . . . 5  |-  B  =  ( Base `  R
)
121, 11opprbasg 14033 . . . 4  |-  ( R  e. Rng  ->  B  =  (
Base `  (oppr
`  R ) ) )
1312adantr 276 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  B  =  ( Base `  (oppr
`  R ) ) )
1413raleqdv 2734 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) )
15 isridlrng.t . . . . . . 7  |-  .x.  =  ( .r `  R )
1611, 15, 1, 8opprmulg 14029 . . . . . 6  |-  ( ( R  e. Rng  /\  x  e.  B  /\  y  e.  I )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
1716ad4ant134 1241 . . . . 5  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( x
( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
1817eleq1d 2298 . . . 4  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
1918ralbidva 2526 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2019ralbidva 2526 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2110, 14, 203bitr2d 216 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106  SubGrpcsubg 13699  Rngcrng 13890  opprcoppr 14025  LIdealclidl 14425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-subg 13702  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891  df-oppr 14026  df-lssm 14311  df-sra 14393  df-rgmod 14394  df-lidl 14427
This theorem is referenced by:  df2idl2rng  14466
  Copyright terms: Public domain W3C validator