ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng Unicode version

Theorem isridlrng 14116
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridlrng.b  |-  B  =  ( Base `  R
)
isridlrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridlrng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2196 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 13711 . . 3  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
31opprsubgg 13718 . . . . 5  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
43eleq2d 2266 . . . 4  |-  ( R  e. Rng  ->  ( I  e.  (SubGrp `  R )  <->  I  e.  (SubGrp `  (oppr `  R
) ) ) )
54biimpa 296 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  I  e.  (SubGrp `  (oppr
`  R ) ) )
6 isridlrng.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
7 eqid 2196 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
8 eqid 2196 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
96, 7, 8dflidl2rng 14115 . . 3  |-  ( ( (oppr
`  R )  e. Rng  /\  I  e.  (SubGrp `  (oppr
`  R ) ) )  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
102, 5, 9syl2an2r 595 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
11 isridlrng.b . . . . 5  |-  B  =  ( Base `  R
)
121, 11opprbasg 13709 . . . 4  |-  ( R  e. Rng  ->  B  =  (
Base `  (oppr
`  R ) ) )
1312adantr 276 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  B  =  ( Base `  (oppr
`  R ) ) )
1413raleqdv 2699 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) )
15 isridlrng.t . . . . . . 7  |-  .x.  =  ( .r `  R )
1611, 15, 1, 8opprmulg 13705 . . . . . 6  |-  ( ( R  e. Rng  /\  x  e.  B  /\  y  e.  I )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
1716ad4ant134 1219 . . . . 5  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( x
( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
1817eleq1d 2265 . . . 4  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
1918ralbidva 2493 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2019ralbidva 2493 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2110, 14, 203bitr2d 216 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12705   .rcmulr 12783  SubGrpcsubg 13375  Rngcrng 13566  opprcoppr 13701  LIdealclidl 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-subg 13378  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-oppr 13702  df-lssm 13987  df-sra 14069  df-rgmod 14070  df-lidl 14103
This theorem is referenced by:  df2idl2rng  14142
  Copyright terms: Public domain W3C validator