| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isridlrng | Unicode version | ||
| Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| isridlrng.u |
|
| isridlrng.b |
|
| isridlrng.t |
|
| Ref | Expression |
|---|---|
| isridlrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 |
. . . 4
| |
| 2 | 1 | opprrng 13924 |
. . 3
|
| 3 | 1 | opprsubgg 13931 |
. . . . 5
|
| 4 | 3 | eleq2d 2276 |
. . . 4
|
| 5 | 4 | biimpa 296 |
. . 3
|
| 6 | isridlrng.u |
. . . 4
| |
| 7 | eqid 2206 |
. . . 4
| |
| 8 | eqid 2206 |
. . . 4
| |
| 9 | 6, 7, 8 | dflidl2rng 14328 |
. . 3
|
| 10 | 2, 5, 9 | syl2an2r 595 |
. 2
|
| 11 | isridlrng.b |
. . . . 5
| |
| 12 | 1, 11 | opprbasg 13922 |
. . . 4
|
| 13 | 12 | adantr 276 |
. . 3
|
| 14 | 13 | raleqdv 2709 |
. 2
|
| 15 | isridlrng.t |
. . . . . . 7
| |
| 16 | 11, 15, 1, 8 | opprmulg 13918 |
. . . . . 6
|
| 17 | 16 | ad4ant134 1220 |
. . . . 5
|
| 18 | 17 | eleq1d 2275 |
. . . 4
|
| 19 | 18 | ralbidva 2503 |
. . 3
|
| 20 | 19 | ralbidva 2503 |
. 2
|
| 21 | 10, 14, 20 | 3bitr2d 216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-tpos 6349 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-mulr 13008 df-sca 13010 df-vsca 13011 df-ip 13012 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-subg 13591 df-cmn 13707 df-abl 13708 df-mgp 13768 df-rng 13780 df-oppr 13915 df-lssm 14200 df-sra 14282 df-rgmod 14283 df-lidl 14316 |
| This theorem is referenced by: df2idl2rng 14355 |
| Copyright terms: Public domain | W3C validator |