ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng Unicode version

Theorem isridlrng 13823
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridlrng.b  |-  B  =  ( Base `  R
)
isridlrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridlrng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2189 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 13452 . . 3  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
31opprsubgg 13459 . . . . 5  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
43eleq2d 2259 . . . 4  |-  ( R  e. Rng  ->  ( I  e.  (SubGrp `  R )  <->  I  e.  (SubGrp `  (oppr `  R
) ) ) )
54biimpa 296 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  I  e.  (SubGrp `  (oppr
`  R ) ) )
6 isridlrng.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
7 eqid 2189 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
8 eqid 2189 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
96, 7, 8dflidl2rng 13822 . . 3  |-  ( ( (oppr
`  R )  e. Rng  /\  I  e.  (SubGrp `  (oppr
`  R ) ) )  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
102, 5, 9syl2an2r 595 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
11 isridlrng.b . . . . 5  |-  B  =  ( Base `  R
)
121, 11opprbasg 13450 . . . 4  |-  ( R  e. Rng  ->  B  =  (
Base `  (oppr
`  R ) ) )
1312adantr 276 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  B  =  ( Base `  (oppr
`  R ) ) )
1413raleqdv 2692 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) )
15 isridlrng.t . . . . . . 7  |-  .x.  =  ( .r `  R )
1611, 15, 1, 8opprmulg 13446 . . . . . 6  |-  ( ( R  e. Rng  /\  x  e.  B  /\  y  e.  I )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
1716ad4ant134 1219 . . . . 5  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( x
( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
1817eleq1d 2258 . . . 4  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
1918ralbidva 2486 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2019ralbidva 2486 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2110, 14, 203bitr2d 216 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5238  (class class class)co 5900   Basecbs 12523   .rcmulr 12601  SubGrpcsubg 13131  Rngcrng 13311  opprcoppr 13442  LIdealclidl 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-tpos 6274  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-7 9018  df-8 9019  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-sca 12616  df-vsca 12617  df-ip 12618  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-subg 13134  df-cmn 13250  df-abl 13251  df-mgp 13300  df-rng 13312  df-oppr 13443  df-lssm 13694  df-sra 13776  df-rgmod 13777  df-lidl 13810
This theorem is referenced by:  df2idl2rng  13848
  Copyright terms: Public domain W3C validator