ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng Unicode version

Theorem isridlrng 14244
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridlrng.b  |-  B  =  ( Base `  R
)
isridlrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridlrng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2205 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 13839 . . 3  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
31opprsubgg 13846 . . . . 5  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
43eleq2d 2275 . . . 4  |-  ( R  e. Rng  ->  ( I  e.  (SubGrp `  R )  <->  I  e.  (SubGrp `  (oppr `  R
) ) ) )
54biimpa 296 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  I  e.  (SubGrp `  (oppr
`  R ) ) )
6 isridlrng.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
7 eqid 2205 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
8 eqid 2205 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
96, 7, 8dflidl2rng 14243 . . 3  |-  ( ( (oppr
`  R )  e. Rng  /\  I  e.  (SubGrp `  (oppr
`  R ) ) )  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
102, 5, 9syl2an2r 595 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
11 isridlrng.b . . . . 5  |-  B  =  ( Base `  R
)
121, 11opprbasg 13837 . . . 4  |-  ( R  e. Rng  ->  B  =  (
Base `  (oppr
`  R ) ) )
1312adantr 276 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  B  =  ( Base `  (oppr
`  R ) ) )
1413raleqdv 2708 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) )
15 isridlrng.t . . . . . . 7  |-  .x.  =  ( .r `  R )
1611, 15, 1, 8opprmulg 13833 . . . . . 6  |-  ( ( R  e. Rng  /\  x  e.  B  /\  y  e.  I )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
1716ad4ant134 1220 . . . . 5  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( x
( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
1817eleq1d 2274 . . . 4  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
1918ralbidva 2502 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2019ralbidva 2502 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2110, 14, 203bitr2d 216 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   .rcmulr 12910  SubGrpcsubg 13503  Rngcrng 13694  opprcoppr 13829  LIdealclidl 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-tpos 6331  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-ip 12927  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-rng 13695  df-oppr 13830  df-lssm 14115  df-sra 14197  df-rgmod 14198  df-lidl 14231
This theorem is referenced by:  df2idl2rng  14270
  Copyright terms: Public domain W3C validator