ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridlrng Unicode version

Theorem isridlrng 13981
Description: A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
isridlrng.u  |-  U  =  (LIdeal `  (oppr
`  R ) )
isridlrng.b  |-  B  =  ( Base `  R
)
isridlrng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
isridlrng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isridlrng
StepHypRef Expression
1 eqid 2193 . . . 4  |-  (oppr `  R
)  =  (oppr `  R
)
21opprrng 13576 . . 3  |-  ( R  e. Rng  ->  (oppr
`  R )  e. Rng )
31opprsubgg 13583 . . . . 5  |-  ( R  e. Rng  ->  (SubGrp `  R )  =  (SubGrp `  (oppr
`  R ) ) )
43eleq2d 2263 . . . 4  |-  ( R  e. Rng  ->  ( I  e.  (SubGrp `  R )  <->  I  e.  (SubGrp `  (oppr `  R
) ) ) )
54biimpa 296 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  I  e.  (SubGrp `  (oppr
`  R ) ) )
6 isridlrng.u . . . 4  |-  U  =  (LIdeal `  (oppr
`  R ) )
7 eqid 2193 . . . 4  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
8 eqid 2193 . . . 4  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
96, 7, 8dflidl2rng 13980 . . 3  |-  ( ( (oppr
`  R )  e. Rng  /\  I  e.  (SubGrp `  (oppr
`  R ) ) )  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
102, 5, 9syl2an2r 595 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  (
Base `  (oppr
`  R ) ) A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I
) )
11 isridlrng.b . . . . 5  |-  B  =  ( Base `  R
)
121, 11opprbasg 13574 . . . 4  |-  ( R  e. Rng  ->  B  =  (
Base `  (oppr
`  R ) ) )
1312adantr 276 . . 3  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  B  =  ( Base `  (oppr
`  R ) ) )
1413raleqdv 2696 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  ( Base `  (oppr `  R
) ) A. y  e.  I  ( x
( .r `  (oppr `  R
) ) y )  e.  I ) )
15 isridlrng.t . . . . . . 7  |-  .x.  =  ( .r `  R )
1611, 15, 1, 8opprmulg 13570 . . . . . 6  |-  ( ( R  e. Rng  /\  x  e.  B  /\  y  e.  I )  ->  (
x ( .r `  (oppr `  R ) ) y )  =  ( y 
.x.  x ) )
1716ad4ant134 1219 . . . . 5  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( x
( .r `  (oppr `  R
) ) y )  =  ( y  .x.  x ) )
1817eleq1d 2262 . . . 4  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  x  e.  B )  /\  y  e.  I
)  ->  ( (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  ( y  .x.  x )  e.  I
) )
1918ralbidva 2490 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  x  e.  B )  ->  ( A. y  e.  I 
( x ( .r
`  (oppr
`  R ) ) y )  e.  I  <->  A. y  e.  I  ( y  .x.  x )  e.  I ) )
2019ralbidva 2490 . 2  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x ( .r `  (oppr `  R ) ) y )  e.  I  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I
) )
2110, 14, 203bitr2d 216 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( y  .x.  x
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919   Basecbs 12621   .rcmulr 12699  SubGrpcsubg 13240  Rngcrng 13431  opprcoppr 13566  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-oppr 13567  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by:  df2idl2rng  14007
  Copyright terms: Public domain W3C validator