Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prsrcl | GIF version |
Description: Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
Ref | Expression |
---|---|
prsrcl | ⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 7457 | . . . 4 ⊢ 1P ∈ P | |
2 | addclpr 7440 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 1P ∈ P) → (𝐴 +P 1P) ∈ P) | |
3 | 1, 2 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ P → (𝐴 +P 1P) ∈ P) |
4 | opelxpi 4615 | . . . 4 ⊢ (((𝐴 +P 1P) ∈ P ∧ 1P ∈ P) → 〈(𝐴 +P 1P), 1P〉 ∈ (P × P)) | |
5 | 1, 4 | mpan2 422 | . . 3 ⊢ ((𝐴 +P 1P) ∈ P → 〈(𝐴 +P 1P), 1P〉 ∈ (P × P)) |
6 | enrex 7640 | . . . 4 ⊢ ~R ∈ V | |
7 | 6 | ecelqsi 6527 | . . 3 ⊢ (〈(𝐴 +P 1P), 1P〉 ∈ (P × P) → [〈(𝐴 +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
8 | 3, 5, 7 | 3syl 17 | . 2 ⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
9 | df-nr 7630 | . 2 ⊢ R = ((P × P) / ~R ) | |
10 | 8, 9 | eleqtrrdi 2251 | 1 ⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 〈cop 3563 × cxp 4581 (class class class)co 5818 [cec 6471 / cqs 6472 Pcnp 7194 1Pc1p 7195 +P cpp 7196 ~R cer 7199 Rcnr 7200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-enr 7629 df-nr 7630 |
This theorem is referenced by: caucvgsrlemgt1 7698 caucvgsrlemoffcau 7701 recidpirq 7761 axcaucvglemcau 7801 |
Copyright terms: Public domain | W3C validator |