![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reneg | GIF version |
Description: Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
reneg | ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl 10511 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
2 | 1 | recnd 7711 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
3 | ax-icn 7633 | . . . . . 6 ⊢ i ∈ ℂ | |
4 | imcl 10512 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
5 | 4 | recnd 7711 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
6 | mulcl 7664 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
7 | 3, 5, 6 | sylancr 408 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
8 | 2, 7 | negdid 8002 | . . . 4 ⊢ (𝐴 ∈ ℂ → -((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
9 | replim 10517 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
10 | 9 | negeqd 7873 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 = -((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
11 | mulneg2 8070 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) | |
12 | 3, 5, 11 | sylancr 408 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴))) |
13 | 12 | oveq2d 5742 | . . . 4 ⊢ (𝐴 ∈ ℂ → (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = (-(ℜ‘𝐴) + -(i · (ℑ‘𝐴)))) |
14 | 8, 10, 13 | 3eqtr4d 2155 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 = (-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) |
15 | 14 | fveq2d 5377 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴))))) |
16 | 1 | renegcld 8054 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℜ‘𝐴) ∈ ℝ) |
17 | 4 | renegcld 8054 | . . 3 ⊢ (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ) |
18 | crre 10515 | . . 3 ⊢ ((-(ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴)) | |
19 | 16, 17, 18 | syl2anc 406 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(-(ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = -(ℜ‘𝐴)) |
20 | 15, 19 | eqtrd 2145 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1312 ∈ wcel 1461 ‘cfv 5079 (class class class)co 5726 ℂcc 7538 ℝcr 7539 ici 7542 + caddc 7543 · cmul 7545 -cneg 7850 ℜcre 10498 ℑcim 10499 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7629 ax-resscn 7630 ax-1cn 7631 ax-1re 7632 ax-icn 7633 ax-addcl 7634 ax-addrcl 7635 ax-mulcl 7636 ax-mulrcl 7637 ax-addcom 7638 ax-mulcom 7639 ax-addass 7640 ax-mulass 7641 ax-distr 7642 ax-i2m1 7643 ax-0lt1 7644 ax-1rid 7645 ax-0id 7646 ax-rnegex 7647 ax-precex 7648 ax-cnre 7649 ax-pre-ltirr 7650 ax-pre-ltwlin 7651 ax-pre-lttrn 7652 ax-pre-apti 7653 ax-pre-ltadd 7654 ax-pre-mulgt0 7655 ax-pre-mulext 7656 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-po 4176 df-iso 4177 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-pnf 7719 df-mnf 7720 df-xr 7721 df-ltxr 7722 df-le 7723 df-sub 7851 df-neg 7852 df-reap 8248 df-ap 8255 df-div 8339 df-2 8682 df-cj 10500 df-re 10501 df-im 10502 |
This theorem is referenced by: resub 10528 cjneg 10548 renegi 10582 renegd 10612 |
Copyright terms: Public domain | W3C validator |