ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlghm GIF version

Theorem ringlghm 13557
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringlghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringlghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2193 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 13497 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . 5 · = (.r𝑅)
61, 5ringcl 13509 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1205 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 5713 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 984 . . . . 5 ((𝑋𝐵𝑦𝐵𝑧𝐵) ↔ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵)))
101, 2, 5ringdi 13514 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
119, 10sylan2br 288 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵))) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1211anassrs 400 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
13 eqid 2193 . . . 4 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
14 oveq2 5926 . . . 4 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g𝑅)𝑧)))
151, 2ringacl 13526 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
16153expb 1206 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1716adantlr 477 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
18 simpll 527 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
19 simplr 528 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑋𝐵)
201, 5ringcl 13509 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵) → (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ 𝐵)
2118, 19, 17, 20syl3anc 1249 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ 𝐵)
2213, 14, 17, 21fvmptd3 5651 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
23 oveq2 5926 . . . . 5 (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦))
24 simprl 529 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
251, 5ringcl 13509 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑦𝐵) → (𝑋 · 𝑦) ∈ 𝐵)
2618, 19, 24, 25syl3anc 1249 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · 𝑦) ∈ 𝐵)
2713, 23, 24, 26fvmptd3 5651 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦))
28 oveq2 5926 . . . . 5 (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧))
29 simprr 531 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
301, 5ringcl 13509 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑧𝐵) → (𝑋 · 𝑧) ∈ 𝐵)
3118, 19, 29, 30syl3anc 1249 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · 𝑧) ∈ 𝐵)
3213, 28, 29, 31fvmptd3 5651 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧))
3327, 32oveq12d 5936 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
3412, 22, 333eqtr4d 2236 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)))
351, 1, 2, 2, 4, 4, 8, 34isghmd 13322 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cmpt 4090  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Grpcgrp 13072   GrpHom cghm 13310  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ring 13494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator