| Step | Hyp | Ref
 | Expression | 
| 1 |   | ringlghm.b | 
. 2
⊢ 𝐵 = (Base‘𝑅) | 
| 2 |   | eqid 2196 | 
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 3 |   | ringgrp 13557 | 
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 4 | 3 | adantr 276 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) | 
| 5 |   | ringlghm.t | 
. . . . 5
⊢  · =
(.r‘𝑅) | 
| 6 | 1, 5 | ringcl 13569 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) | 
| 7 | 6 | 3expa 1205 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) | 
| 8 | 7 | fmpttd 5717 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) | 
| 9 |   | 3anass 984 | 
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | 
| 10 | 1, 2, 5 | ringdi 13574 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) | 
| 11 | 9, 10 | sylan2br 288 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) | 
| 12 | 11 | anassrs 400 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) | 
| 13 |   | eqid 2196 | 
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) | 
| 14 |   | oveq2 5930 | 
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) | 
| 15 | 1, 2 | ringacl 13586 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 16 | 15 | 3expb 1206 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 17 | 16 | adantlr 477 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 18 |   | simpll 527 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) | 
| 19 |   | simplr 528 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 20 | 1, 5 | ringcl 13569 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ 𝐵) | 
| 21 | 18, 19, 17, 20 | syl3anc 1249 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ 𝐵) | 
| 22 | 13, 14, 17, 21 | fvmptd3 5655 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) | 
| 23 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦)) | 
| 24 |   | simprl 529 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 25 | 1, 5 | ringcl 13569 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑋 · 𝑦) ∈ 𝐵) | 
| 26 | 18, 19, 24, 25 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · 𝑦) ∈ 𝐵) | 
| 27 | 13, 23, 24, 26 | fvmptd3 5655 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦)) | 
| 28 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧)) | 
| 29 |   | simprr 531 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 30 | 1, 5 | ringcl 13569 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑋 · 𝑧) ∈ 𝐵) | 
| 31 | 18, 19, 29, 30 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · 𝑧) ∈ 𝐵) | 
| 32 | 13, 28, 29, 31 | fvmptd3 5655 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧)) | 
| 33 | 27, 32 | oveq12d 5940 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) | 
| 34 | 12, 22, 33 | 3eqtr4d 2239 | 
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧))) | 
| 35 | 1, 1, 2, 2, 4, 4, 8, 34 | isghmd 13382 | 
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |