Step | Hyp | Ref
| Expression |
1 | | ringlghm.b |
. 2
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2193 |
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) |
3 | | ringgrp 13497 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
4 | 3 | adantr 276 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | | ringlghm.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
6 | 1, 5 | ringcl 13509 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1205 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
8 | 7 | fmpttd 5713 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
9 | | 3anass 984 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) |
10 | 1, 2, 5 | ringdi 13514 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
11 | 9, 10 | sylan2br 288 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
12 | 11 | anassrs 400 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
13 | | eqid 2193 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) |
14 | | oveq2 5926 |
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
15 | 1, 2 | ringacl 13526 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
16 | 15 | 3expb 1206 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
17 | 16 | adantlr 477 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
18 | | simpll 527 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) |
19 | | simplr 528 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
20 | 1, 5 | ringcl 13509 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ 𝐵) |
21 | 18, 19, 17, 20 | syl3anc 1249 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ 𝐵) |
22 | 13, 14, 17, 21 | fvmptd3 5651 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
23 | | oveq2 5926 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦)) |
24 | | simprl 529 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
25 | 1, 5 | ringcl 13509 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑋 · 𝑦) ∈ 𝐵) |
26 | 18, 19, 24, 25 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · 𝑦) ∈ 𝐵) |
27 | 13, 23, 24, 26 | fvmptd3 5651 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦)) |
28 | | oveq2 5926 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧)) |
29 | | simprr 531 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
30 | 1, 5 | ringcl 13509 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑋 · 𝑧) ∈ 𝐵) |
31 | 18, 19, 29, 30 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · 𝑧) ∈ 𝐵) |
32 | 13, 28, 29, 31 | fvmptd3 5651 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧)) |
33 | 27, 32 | oveq12d 5936 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
34 | 12, 22, 33 | 3eqtr4d 2236 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧))) |
35 | 1, 1, 2, 2, 4, 4, 8, 34 | isghmd 13322 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |