Step | Hyp | Ref
| Expression |
1 | | ringlghm.b |
. 2
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2193 |
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) |
3 | | ringgrp 13497 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
4 | 3 | adantr 276 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | | ringlghm.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
6 | 1, 5 | ringcl 13509 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
7 | 6 | 3expa 1205 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
8 | 7 | an32s 568 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
9 | 8 | fmpttd 5713 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
10 | | df-3an 982 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) |
11 | 1, 2, 5 | ringdir 13515 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
12 | 10, 11 | sylan2br 288 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
13 | 12 | anass1rs 571 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
14 | | eqid 2193 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) |
15 | | oveq1 5925 |
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
16 | 1, 2 | ringacl 13526 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
17 | 16 | 3expb 1206 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
18 | 17 | adantlr 477 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
19 | | simpll 527 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) |
20 | | simplr 528 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
21 | 1, 5 | ringcl 13509 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ 𝐵) |
22 | 19, 18, 20, 21 | syl3anc 1249 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ 𝐵) |
23 | 14, 15, 18, 22 | fvmptd3 5651 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
24 | | oveq1 5925 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) |
25 | | simprl 529 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
26 | 1, 5 | ringcl 13509 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) |
27 | 19, 25, 20, 26 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 · 𝑋) ∈ 𝐵) |
28 | 14, 24, 25, 27 | fvmptd3 5651 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋)) |
29 | | oveq1 5925 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋)) |
30 | | simprr 531 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
31 | 1, 5 | ringcl 13509 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑧 · 𝑋) ∈ 𝐵) |
32 | 19, 30, 20, 31 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 · 𝑋) ∈ 𝐵) |
33 | 14, 29, 30, 32 | fvmptd3 5651 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋)) |
34 | 28, 33 | oveq12d 5936 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
35 | 13, 23, 34 | 3eqtr4d 2236 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧))) |
36 | 1, 1, 2, 2, 4, 4, 9, 35 | isghmd 13322 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |