| Step | Hyp | Ref
 | Expression | 
| 1 |   | ringlghm.b | 
. 2
⊢ 𝐵 = (Base‘𝑅) | 
| 2 |   | eqid 2196 | 
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 3 |   | ringgrp 13557 | 
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 4 | 3 | adantr 276 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) | 
| 5 |   | ringlghm.t | 
. . . . . 6
⊢  · =
(.r‘𝑅) | 
| 6 | 1, 5 | ringcl 13569 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 7 | 6 | 3expa 1205 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 8 | 7 | an32s 568 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) | 
| 9 | 8 | fmpttd 5717 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) | 
| 10 |   | df-3an 982 | 
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | 
| 11 | 1, 2, 5 | ringdir 13575 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) | 
| 12 | 10, 11 | sylan2br 288 | 
. . . 4
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) | 
| 13 | 12 | anass1rs 571 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) | 
| 14 |   | eqid 2196 | 
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) | 
| 15 |   | oveq1 5929 | 
. . . 4
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) | 
| 16 | 1, 2 | ringacl 13586 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 17 | 16 | 3expb 1206 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 18 | 17 | adantlr 477 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 19 |   | simpll 527 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Ring) | 
| 20 |   | simplr 528 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 21 | 1, 5 | ringcl 13569 | 
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ 𝐵) | 
| 22 | 19, 18, 20, 21 | syl3anc 1249 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ 𝐵) | 
| 23 | 14, 15, 18, 22 | fvmptd3 5655 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) | 
| 24 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) | 
| 25 |   | simprl 529 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 26 | 1, 5 | ringcl 13569 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 27 | 19, 25, 20, 26 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 · 𝑋) ∈ 𝐵) | 
| 28 | 14, 24, 25, 27 | fvmptd3 5655 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋)) | 
| 29 |   | oveq1 5929 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋)) | 
| 30 |   | simprr 531 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 31 | 1, 5 | ringcl 13569 | 
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑧 · 𝑋) ∈ 𝐵) | 
| 32 | 19, 30, 20, 31 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 · 𝑋) ∈ 𝐵) | 
| 33 | 14, 29, 30, 32 | fvmptd3 5655 | 
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋)) | 
| 34 | 28, 33 | oveq12d 5940 | 
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) | 
| 35 | 13, 23, 34 | 3eqtr4d 2239 | 
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧))) | 
| 36 | 1, 1, 2, 2, 4, 4, 9, 35 | isghmd 13382 | 
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |