ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrghm GIF version

Theorem ringrghm 13561
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringrghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringrghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2193 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 13500 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . . 6 · = (.r𝑅)
61, 5ringcl 13512 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763expa 1205 . . . 4 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
87an32s 568 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 5714 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 df-3an 982 . . . . 5 ((𝑦𝐵𝑧𝐵𝑋𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵))
111, 2, 5ringdir 13518 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1210, 11sylan2br 288 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1312anass1rs 571 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
14 eqid 2193 . . . 4 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
15 oveq1 5926 . . . 4 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g𝑅)𝑧) · 𝑋))
161, 2ringacl 13529 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17163expb 1206 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1817adantlr 477 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
19 simpll 527 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
20 simplr 528 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑋𝐵)
211, 5ringcl 13512 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵𝑋𝐵) → ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ 𝐵)
2219, 18, 20, 21syl3anc 1249 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ 𝐵)
2314, 15, 18, 22fvmptd3 5652 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
24 oveq1 5926 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
25 simprl 529 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
261, 5ringcl 13512 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2719, 25, 20, 26syl3anc 1249 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 · 𝑋) ∈ 𝐵)
2814, 24, 25, 27fvmptd3 5652 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋))
29 oveq1 5926 . . . . 5 (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋))
30 simprr 531 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
311, 5ringcl 13512 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑧𝐵𝑋𝐵) → (𝑧 · 𝑋) ∈ 𝐵)
3219, 30, 20, 31syl3anc 1249 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑧 · 𝑋) ∈ 𝐵)
3314, 29, 30, 32fvmptd3 5652 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋))
3428, 33oveq12d 5937 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
3513, 23, 343eqtr4d 2236 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)))
361, 1, 2, 2, 4, 4, 9, 35isghmd 13325 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cmpt 4091  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  Grpcgrp 13075   GrpHom cghm 13313  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ring 13497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator