ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringrghm GIF version

Theorem ringrghm 13991
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringrghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringrghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2209 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 13930 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . . 6 · = (.r𝑅)
61, 5ringcl 13942 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763expa 1208 . . . 4 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
87an32s 568 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 5763 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 df-3an 985 . . . . 5 ((𝑦𝐵𝑧𝐵𝑋𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵))
111, 2, 5ringdir 13948 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1210, 11sylan2br 288 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1312anass1rs 571 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
14 eqid 2209 . . . 4 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
15 oveq1 5981 . . . 4 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g𝑅)𝑧) · 𝑋))
161, 2ringacl 13959 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17163expb 1209 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1817adantlr 477 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
19 simpll 527 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 ∈ Ring)
20 simplr 528 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑋𝐵)
211, 5ringcl 13942 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦(+g𝑅)𝑧) ∈ 𝐵𝑋𝐵) → ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ 𝐵)
2219, 18, 20, 21syl3anc 1252 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ 𝐵)
2314, 15, 18, 22fvmptd3 5701 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
24 oveq1 5981 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
25 simprl 529 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
261, 5ringcl 13942 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2719, 25, 20, 26syl3anc 1252 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 · 𝑋) ∈ 𝐵)
2814, 24, 25, 27fvmptd3 5701 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋))
29 oveq1 5981 . . . . 5 (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋))
30 simprr 531 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
311, 5ringcl 13942 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑧𝐵𝑋𝐵) → (𝑧 · 𝑋) ∈ 𝐵)
3219, 30, 20, 31syl3anc 1252 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑧 · 𝑋) ∈ 𝐵)
3314, 29, 30, 32fvmptd3 5701 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋))
3428, 33oveq12d 5992 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
3513, 23, 343eqtr4d 2252 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)))
361, 1, 2, 2, 4, 4, 9, 35isghmd 13755 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  cmpt 4124  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  Grpcgrp 13499   GrpHom cghm 13743  Ringcrg 13925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-ghm 13744  df-mgp 13850  df-ring 13927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator