ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngass GIF version

Theorem rngass 13310
Description: Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
rngass.b 𝐵 = (Base‘𝑅)
rngass.t · = (.r𝑅)
Assertion
Ref Expression
rngass ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem rngass
StepHypRef Expression
1 eqid 2189 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21rngmgp 13307 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
32adantr 276 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (mulGrp‘𝑅) ∈ Smgrp)
4 simpr1 1005 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 rngass.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13297 . . . . 5 (𝑅 ∈ Rng → 𝐵 = (Base‘(mulGrp‘𝑅)))
76adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2268 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simpr2 1006 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
109, 7eleqtrd 2268 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 simpr3 1007 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
1211, 7eleqtrd 2268 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2189 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2189 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14sgrpass 12886 . . 3 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
163, 8, 10, 12, 15syl13anc 1251 . 2 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
17 rngass.t . . . . . . 7 · = (.r𝑅)
181, 17mgpplusgg 13295 . . . . . 6 (𝑅 ∈ Rng → · = (+g‘(mulGrp‘𝑅)))
1918oveqd 5914 . . . . 5 (𝑅 ∈ Rng → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2018oveqd 5914 . . . . . 6 (𝑅 ∈ Rng → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2120oveq1d 5912 . . . . 5 (𝑅 ∈ Rng → ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2219, 21eqtrd 2222 . . . 4 (𝑅 ∈ Rng → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2318oveqd 5914 . . . . 5 (𝑅 ∈ Rng → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)))
2418oveqd 5914 . . . . . 6 (𝑅 ∈ Rng → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍))
2524oveq2d 5913 . . . . 5 (𝑅 ∈ Rng → (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2623, 25eqtrd 2222 . . . 4 (𝑅 ∈ Rng → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2722, 26eqeq12d 2204 . . 3 (𝑅 ∈ Rng → (((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)) ↔ ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))))
2827adantr 276 . 2 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)) ↔ ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))))
2916, 28mpbird 167 1 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  cfv 5235  (class class class)co 5897  Basecbs 12515  +gcplusg 12592  .rcmulr 12593  Smgrpcsgrp 12879  mulGrpcmgp 13291  Rngcrng 13303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-sgrp 12880  df-mgp 13292  df-rng 13304
This theorem is referenced by:  rngressid  13325  imasrng  13327  opprrng  13444  issubrng2  13574
  Copyright terms: Public domain W3C validator