ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rngass GIF version

Theorem rngass 13897
Description: Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
rngass.b 𝐵 = (Base‘𝑅)
rngass.t · = (.r𝑅)
Assertion
Ref Expression
rngass ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem rngass
StepHypRef Expression
1 eqid 2229 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21rngmgp 13894 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
32adantr 276 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (mulGrp‘𝑅) ∈ Smgrp)
4 simpr1 1027 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 rngass.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13884 . . . . 5 (𝑅 ∈ Rng → 𝐵 = (Base‘(mulGrp‘𝑅)))
76adantr 276 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2308 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simpr2 1028 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
109, 7eleqtrd 2308 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 simpr3 1029 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
1211, 7eleqtrd 2308 . . 3 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2229 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2229 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14sgrpass 13436 . . 3 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
163, 8, 10, 12, 15syl13anc 1273 . 2 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
17 rngass.t . . . . . . 7 · = (.r𝑅)
181, 17mgpplusgg 13882 . . . . . 6 (𝑅 ∈ Rng → · = (+g‘(mulGrp‘𝑅)))
1918oveqd 6017 . . . . 5 (𝑅 ∈ Rng → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2018oveqd 6017 . . . . . 6 (𝑅 ∈ Rng → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2120oveq1d 6015 . . . . 5 (𝑅 ∈ Rng → ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2219, 21eqtrd 2262 . . . 4 (𝑅 ∈ Rng → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2318oveqd 6017 . . . . 5 (𝑅 ∈ Rng → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)))
2418oveqd 6017 . . . . . 6 (𝑅 ∈ Rng → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍))
2524oveq2d 6016 . . . . 5 (𝑅 ∈ Rng → (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2623, 25eqtrd 2262 . . . 4 (𝑅 ∈ Rng → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2722, 26eqeq12d 2244 . . 3 (𝑅 ∈ Rng → (((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)) ↔ ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))))
2827adantr 276 . 2 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)) ↔ ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))))
2916, 28mpbird 167 1 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  Smgrpcsgrp 13429  mulGrpcmgp 13878  Rngcrng 13890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sgrp 13430  df-mgp 13879  df-rng 13891
This theorem is referenced by:  rngressid  13912  imasrng  13914  opprrng  14035  issubrng2  14168
  Copyright terms: Public domain W3C validator