ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubm Unicode version

Theorem subsubm 13430
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubm  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2207 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
21submss 13423 . . . . . . 7  |-  ( A  e.  (SubMnd `  H
)  ->  A  C_  ( Base `  H ) )
32adantl 277 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  H ) )
4 subsubm.h . . . . . . . 8  |-  H  =  ( Gs  S )
54submbas 13428 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
65adantr 276 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  =  ( Base `  H )
)
73, 6sseqtrrd 3240 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  S
)
8 eqid 2207 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
98submss 13423 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
109adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  C_  ( Base `  G ) )
117, 10sstrd 3211 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  G ) )
12 eqid 2207 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
134, 12subm0 13429 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
1413adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 eqid 2207 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
1615subm0cl 13425 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( 0g `  H )  e.  A
)
1716adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  H )  e.  A
)
1814, 17eqeltrd 2284 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  e.  A
)
194oveq1i 5977 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
20 submrcl 13418 . . . . . . . . 9  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
2120adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  G  e.  Mnd )
22 ressabsg 13023 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S  /\  G  e. 
Mnd )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2321, 22mpd3an3 1351 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2419, 23eqtrid 2252 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
257, 24syldan 282 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
26 eqid 2207 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2726submmnd 13427 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( Hs  A
)  e.  Mnd )
2827adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  e.  Mnd )
2925, 28eqeltrrd 2285 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Gs  A
)  e.  Mnd )
3020adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  G  e.  Mnd )
31 eqid 2207 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
328, 12, 31issubm2 13420 . . . . 5  |-  ( G  e.  Mnd  ->  ( A  e.  (SubMnd `  G
)  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  A  /\  ( Gs  A )  e.  Mnd ) ) )
3330, 32syl 14 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G )  e.  A  /\  ( Gs  A )  e.  Mnd )
) )
3411, 18, 29, 33mpbir3and 1183 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  e.  (SubMnd `  G ) )
3534, 7jca 306 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) )
36 simprr 531 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
375adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3836, 37sseqtrd 3239 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3913adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  =  ( 0g `  H
) )
4012subm0cl 13425 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  A
)
4140ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  e.  A )
4239, 41eqeltrrd 2285 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  H )  e.  A )
4324adantrl 478 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
4431submmnd 13427 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( Gs  A
)  e.  Mnd )
4544ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Mnd )
4643, 45eqeltrd 2284 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Mnd )
474submmnd 13427 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  H  e.  Mnd )
4847adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  H  e.  Mnd )
491, 15, 26issubm2 13420 . . . 4  |-  ( H  e.  Mnd  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5048, 49syl 14 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5138, 42, 46, 50mpbir3and 1183 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubMnd `  H )
)
5235, 51impbida 596 1  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   0gc0g 13203   Mndcmnd 13363  SubMndcsubmnd 13405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-submnd 13407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator