Proof of Theorem subsubm
Step | Hyp | Ref
| Expression |
1 | | eqid 2189 |
. . . . . . . 8
         |
2 | 1 | submss 12928 |
. . . . . . 7
 SubMnd 
      |
3 | 2 | adantl 277 |
. . . . . 6
  SubMnd  SubMnd  
      |
4 | | subsubm.h |
. . . . . . . 8

↾s   |
5 | 4 | submbas 12933 |
. . . . . . 7
 SubMnd 
      |
6 | 5 | adantr 276 |
. . . . . 6
  SubMnd  SubMnd  
      |
7 | 3, 6 | sseqtrrd 3209 |
. . . . 5
  SubMnd  SubMnd  
  |
8 | | eqid 2189 |
. . . . . . 7
         |
9 | 8 | submss 12928 |
. . . . . 6
 SubMnd 
      |
10 | 9 | adantr 276 |
. . . . 5
  SubMnd  SubMnd  
      |
11 | 7, 10 | sstrd 3180 |
. . . 4
  SubMnd  SubMnd  
      |
12 | | eqid 2189 |
. . . . . . 7
         |
13 | 4, 12 | subm0 12934 |
. . . . . 6
 SubMnd 
          |
14 | 13 | adantr 276 |
. . . . 5
  SubMnd  SubMnd  
          |
15 | | eqid 2189 |
. . . . . . 7
         |
16 | 15 | subm0cl 12930 |
. . . . . 6
 SubMnd 
      |
17 | 16 | adantl 277 |
. . . . 5
  SubMnd  SubMnd  
      |
18 | 14, 17 | eqeltrd 2266 |
. . . 4
  SubMnd  SubMnd  
      |
19 | 4 | oveq1i 5906 |
. . . . . . 7
 ↾s    ↾s 
↾s   |
20 | | submrcl 12923 |
. . . . . . . . 9
 SubMnd 
  |
21 | 20 | adantr 276 |
. . . . . . . 8
  SubMnd     |
22 | | ressabsg 12588 |
. . . . . . . 8
  SubMnd    
↾s 
↾s   ↾s    |
23 | 21, 22 | mpd3an3 1349 |
. . . . . . 7
  SubMnd    
↾s 
↾s   ↾s    |
24 | 19, 23 | eqtrid 2234 |
. . . . . 6
  SubMnd    ↾s   ↾s    |
25 | 7, 24 | syldan 282 |
. . . . 5
  SubMnd  SubMnd  
 ↾s   ↾s    |
26 | | eqid 2189 |
. . . . . . 7
 ↾s   ↾s   |
27 | 26 | submmnd 12932 |
. . . . . 6
 SubMnd 
 ↾s    |
28 | 27 | adantl 277 |
. . . . 5
  SubMnd  SubMnd  
 ↾s    |
29 | 25, 28 | eqeltrrd 2267 |
. . . 4
  SubMnd  SubMnd  
 ↾s    |
30 | 20 | adantr 276 |
. . . . 5
  SubMnd  SubMnd  
  |
31 | | eqid 2189 |
. . . . . 6
 ↾s   ↾s   |
32 | 8, 12, 31 | issubm2 12925 |
. . . . 5
 
SubMnd           
↾s      |
33 | 30, 32 | syl 14 |
. . . 4
  SubMnd  SubMnd  
 SubMnd  
         ↾s      |
34 | 11, 18, 29, 33 | mpbir3and 1182 |
. . 3
  SubMnd  SubMnd  
SubMnd    |
35 | 34, 7 | jca 306 |
. 2
  SubMnd  SubMnd  
 SubMnd 
   |
36 | | simprr 531 |
. . . 4
  SubMnd  
SubMnd 
    |
37 | 5 | adantr 276 |
. . . 4
  SubMnd  
SubMnd 
        |
38 | 36, 37 | sseqtrd 3208 |
. . 3
  SubMnd  
SubMnd 
        |
39 | 13 | adantr 276 |
. . . 4
  SubMnd  
SubMnd 
            |
40 | 12 | subm0cl 12930 |
. . . . 5
 SubMnd 
      |
41 | 40 | ad2antrl 490 |
. . . 4
  SubMnd  
SubMnd 
        |
42 | 39, 41 | eqeltrrd 2267 |
. . 3
  SubMnd  
SubMnd 
        |
43 | 24 | adantrl 478 |
. . . 4
  SubMnd  
SubMnd 
   ↾s   ↾s    |
44 | 31 | submmnd 12932 |
. . . . 5
 SubMnd 
 ↾s    |
45 | 44 | ad2antrl 490 |
. . . 4
  SubMnd  
SubMnd 
   ↾s    |
46 | 43, 45 | eqeltrd 2266 |
. . 3
  SubMnd  
SubMnd 
   ↾s    |
47 | 4 | submmnd 12932 |
. . . . 5
 SubMnd 
  |
48 | 47 | adantr 276 |
. . . 4
  SubMnd  
SubMnd 
    |
49 | 1, 15, 26 | issubm2 12925 |
. . . 4
 
SubMnd           
↾s      |
50 | 48, 49 | syl 14 |
. . 3
  SubMnd  
SubMnd 
  
SubMnd           
↾s      |
51 | 38, 42, 46, 50 | mpbir3and 1182 |
. 2
  SubMnd  
SubMnd 
  SubMnd    |
52 | 35, 51 | impbida 596 |
1
 SubMnd 
 SubMnd   SubMnd      |