ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubm Unicode version

Theorem subsubm 13058
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubm  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2193 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
21submss 13051 . . . . . . 7  |-  ( A  e.  (SubMnd `  H
)  ->  A  C_  ( Base `  H ) )
32adantl 277 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  H ) )
4 subsubm.h . . . . . . . 8  |-  H  =  ( Gs  S )
54submbas 13056 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
65adantr 276 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  =  ( Base `  H )
)
73, 6sseqtrrd 3219 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  S
)
8 eqid 2193 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
98submss 13051 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
109adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  C_  ( Base `  G ) )
117, 10sstrd 3190 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  G ) )
12 eqid 2193 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
134, 12subm0 13057 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
1413adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 eqid 2193 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
1615subm0cl 13053 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( 0g `  H )  e.  A
)
1716adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  H )  e.  A
)
1814, 17eqeltrd 2270 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  e.  A
)
194oveq1i 5929 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
20 submrcl 13046 . . . . . . . . 9  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
2120adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  G  e.  Mnd )
22 ressabsg 12697 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S  /\  G  e. 
Mnd )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2321, 22mpd3an3 1349 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2419, 23eqtrid 2238 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
257, 24syldan 282 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
26 eqid 2193 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2726submmnd 13055 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( Hs  A
)  e.  Mnd )
2827adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  e.  Mnd )
2925, 28eqeltrrd 2271 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Gs  A
)  e.  Mnd )
3020adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  G  e.  Mnd )
31 eqid 2193 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
328, 12, 31issubm2 13048 . . . . 5  |-  ( G  e.  Mnd  ->  ( A  e.  (SubMnd `  G
)  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  A  /\  ( Gs  A )  e.  Mnd ) ) )
3330, 32syl 14 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G )  e.  A  /\  ( Gs  A )  e.  Mnd )
) )
3411, 18, 29, 33mpbir3and 1182 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  e.  (SubMnd `  G ) )
3534, 7jca 306 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) )
36 simprr 531 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
375adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3836, 37sseqtrd 3218 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3913adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  =  ( 0g `  H
) )
4012subm0cl 13053 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  A
)
4140ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  e.  A )
4239, 41eqeltrrd 2271 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  H )  e.  A )
4324adantrl 478 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
4431submmnd 13055 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( Gs  A
)  e.  Mnd )
4544ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Mnd )
4643, 45eqeltrd 2270 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Mnd )
474submmnd 13055 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  H  e.  Mnd )
4847adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  H  e.  Mnd )
491, 15, 26issubm2 13048 . . . 4  |-  ( H  e.  Mnd  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5048, 49syl 14 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5138, 42, 46, 50mpbir3and 1182 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubMnd `  H )
)
5235, 51impbida 596 1  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   0gc0g 12870   Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator