ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubm Unicode version

Theorem subsubm 13315
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subsubm  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2205 . . . . . . . 8  |-  ( Base `  H )  =  (
Base `  H )
21submss 13308 . . . . . . 7  |-  ( A  e.  (SubMnd `  H
)  ->  A  C_  ( Base `  H ) )
32adantl 277 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  H ) )
4 subsubm.h . . . . . . . 8  |-  H  =  ( Gs  S )
54submbas 13313 . . . . . . 7  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
65adantr 276 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  =  ( Base `  H )
)
73, 6sseqtrrd 3232 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  S
)
8 eqid 2205 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
98submss 13308 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
109adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  S  C_  ( Base `  G ) )
117, 10sstrd 3203 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  C_  ( Base `  G ) )
12 eqid 2205 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
134, 12subm0 13314 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
1413adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
15 eqid 2205 . . . . . . 7  |-  ( 0g
`  H )  =  ( 0g `  H
)
1615subm0cl 13310 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( 0g `  H )  e.  A
)
1716adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  H )  e.  A
)
1814, 17eqeltrd 2282 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( 0g `  G )  e.  A
)
194oveq1i 5954 . . . . . . 7  |-  ( Hs  A )  =  ( ( Gs  S )s  A )
20 submrcl 13303 . . . . . . . . 9  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
2120adantr 276 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  G  e.  Mnd )
22 ressabsg 12908 . . . . . . . 8  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S  /\  G  e. 
Mnd )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2321, 22mpd3an3 1351 . . . . . . 7  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  (
( Gs  S )s  A )  =  ( Gs  A ) )
2419, 23eqtrid 2250 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  A  C_  S )  ->  ( Hs  A )  =  ( Gs  A ) )
257, 24syldan 282 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  =  ( Gs  A ) )
26 eqid 2205 . . . . . . 7  |-  ( Hs  A )  =  ( Hs  A )
2726submmnd 13312 . . . . . 6  |-  ( A  e.  (SubMnd `  H
)  ->  ( Hs  A
)  e.  Mnd )
2827adantl 277 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Hs  A
)  e.  Mnd )
2925, 28eqeltrrd 2283 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( Gs  A
)  e.  Mnd )
3020adantr 276 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  G  e.  Mnd )
31 eqid 2205 . . . . . 6  |-  ( Gs  A )  =  ( Gs  A )
328, 12, 31issubm2 13305 . . . . 5  |-  ( G  e.  Mnd  ->  ( A  e.  (SubMnd `  G
)  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  A  /\  ( Gs  A )  e.  Mnd ) ) )
3330, 32syl 14 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  <->  ( A  C_  ( Base `  G )  /\  ( 0g `  G )  e.  A  /\  ( Gs  A )  e.  Mnd )
) )
3411, 18, 29, 33mpbir3and 1183 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  A  e.  (SubMnd `  G ) )
3534, 7jca 306 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  A  e.  (SubMnd `  H )
)  ->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) )
36 simprr 531 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  S )
375adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  S  =  ( Base `  H
) )
3836, 37sseqtrd 3231 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  C_  ( Base `  H
) )
3913adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  =  ( 0g `  H
) )
4012subm0cl 13310 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  A
)
4140ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  G )  e.  A )
4239, 41eqeltrrd 2283 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( 0g `  H )  e.  A )
4324adantrl 478 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  =  ( Gs  A ) )
4431submmnd 13312 . . . . 5  |-  ( A  e.  (SubMnd `  G
)  ->  ( Gs  A
)  e.  Mnd )
4544ad2antrl 490 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Gs  A )  e.  Mnd )
4643, 45eqeltrd 2282 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( Hs  A )  e.  Mnd )
474submmnd 13312 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  H  e.  Mnd )
4847adantr 276 . . . 4  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  H  e.  Mnd )
491, 15, 26issubm2 13305 . . . 4  |-  ( H  e.  Mnd  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5048, 49syl 14 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  ( A  e.  (SubMnd `  H
)  <->  ( A  C_  ( Base `  H )  /\  ( 0g `  H
)  e.  A  /\  ( Hs  A )  e.  Mnd ) ) )
5138, 42, 46, 50mpbir3and 1183 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  ( A  e.  (SubMnd `  G
)  /\  A  C_  S
) )  ->  A  e.  (SubMnd `  H )
)
5235, 51impbida 596 1  |-  ( S  e.  (SubMnd `  G
)  ->  ( A  e.  (SubMnd `  H )  <->  ( A  e.  (SubMnd `  G )  /\  A  C_  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   0gc0g 13088   Mndcmnd 13248  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-submnd 13292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator