HomeHome Intuitionistic Logic Explorer
Theorem List (p. 107 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10601-10700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiseqovex 10601* Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  S )
 
Theoremiseqvalcbv 10602* Changing the bound variables in an expression which appears in some  seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
 |- frec
 ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( a  e.  ( ZZ>= `  M ) ,  b  e.  T  |->  <. ( a  +  1 ) ,  (
 a ( c  e.  ( ZZ>= `  M ) ,  d  e.  S  |->  ( d  .+  ( F `
  ( c  +  1 ) ) ) ) b ) >. ) ,  <. M ,  ( F `  M ) >. )
 
Theoremseq3val 10603* Value of the sequence builder function. This helps expand the definition although there should be little need for it once we have proved seqf 10607, seq3-1 10605 and seq3p1 10608, as further development can be done in terms of those. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 4-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseqvalcd 10604* Value of the sequence builder function. Similar to seq3val 10603 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  R  = frec (
 ( x  e.  ( ZZ>=
 `  M ) ,  y  e.  _V  |->  <.
 ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>=
 `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y ) >. ) ,  <. M ,  ( F `  M ) >. )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
 
Theoremseq3-1 10605* Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 3-Oct-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseq1g 10606 Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V  /\  .+  e.  W ) 
 ->  (  seq M ( 
 .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqf 10607* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
 
Theoremseq3p1 10608* Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 30-Apr-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseqp1g 10609 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 19-Aug-2025.)
 |-  ( ( N  e.  ( ZZ>= `  M )  /\  F  e.  V  /\  .+  e.  W )  ->  (  seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseqovcd 10610* A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10611 and seq1cd 10612 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D )
 )  ->  ( x  .+  y )  e.  C )   =>    |-  ( ( ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  ->  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
  ( z  +  1 ) ) ) ) y )  e.  C )
 
Theoremseqf2 10611* Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
 
Theoremseq1cd 10612* Initial value of the recursive sequence builder. A version of seq3-1 10605 which provides two classes 
D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 19-Jul-2023.)
 |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  M )  =  ( F `  M ) )
 
Theoremseqp1cd 10613* Value of the sequence builder function at a successor. A version of seq3p1 10608 which provides two classes  D and  C for the terms and the value being accumulated, respectively. (Contributed by Jim Kingdon, 20-Jul-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( F `  M )  e.  C )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  D ) )  ->  ( x 
 .+  y )  e.  C )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  1
 ) ) )  ->  ( F `  x )  e.  D )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  ( N  +  1 )
 )  =  ( ( 
 seq M (  .+  ,  F ) `  N )  .+  ( F `  ( N  +  1
 ) ) ) )
 
Theoremseq3clss 10614* Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  T )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ph  ->  S 
 C_  T )   &    |-  (
 ( ph  /\  ( x  e.  T  /\  y  e.  T ) )  ->  ( x  .+  y )  e.  T )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  e.  S )
 
Theoremseqclg 10615* Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  .+  e.  W )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  e.  S )
 
Theoremseq3m1 10616* Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
Theoremseqm1g 10617 Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 )
 ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) ) 
 .+  ( F `  N ) ) )
 
Theoremseq3fveq2 10618* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  k  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq K (  .+  ,  G ) `  N ) )
 
Theoremseq3feq2 10619* Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  ( K  +  1 ) ) )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  K ) )  = 
 seq K (  .+  ,  G ) )
 
Theoremseqfveq2g 10620* Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  K )  =  ( G `  K ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  K ) )   &    |-  ( ( ph  /\  k  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq K (  .+  ,  G ) `  N ) )
 
Theoremseqfveqg 10621* Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseq3fveq 10622* Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  =  ( G `  k
 ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseq3feq 10623* Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  ( G `  k ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   =>    |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( 
 .+  ,  G )
 )
 
Theoremseq3shft2 10624* Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =  ( G `
  ( k  +  K ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  +  K ) ) ) 
 ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  (  seq ( M  +  K ) (  .+  ,  G ) `  ( N  +  K ) ) )
 
Theoremseqshft2g 10625* Shifting the index set of a sequence. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  =  ( G `
  ( k  +  K ) ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  (  seq ( M  +  K ) (  .+  ,  G ) `  ( N  +  K ) ) )
 
Theoremserf 10626* An infinite series of complex terms is a function from  NN to  CC. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
 
Theoremserfre 10627* An infinite series of real numbers is a function from  NN to  RR. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
 
Theoremmonoord 10628* Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  M ) 
 <_  ( F `  N ) )
 
Theoremmonoord2 10629* Ordering relation for a monotonic sequence, decreasing case. (Contributed by Mario Carneiro, 18-Jul-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  -  1 ) ) ) 
 ->  ( F `  (
 k  +  1 ) )  <_  ( F `  k ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  ( F `  M ) )
 
Theoremser3mono 10630* The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  K  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  RR )   &    |-  ( ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  0  <_  ( F `  x ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  K )  <_  (  seq M (  +  ,  F ) `  N ) )
 
Theoremseq3split 10631* Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  K ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  K ) )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  ( 
 seq K (  .+  ,  F ) `  N )  =  ( (  seq K (  .+  ,  F ) `  M )  .+  (  seq ( M  +  1 )
 (  .+  ,  F ) `  N ) ) )
 
Theoremseqsplitg 10632* Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  K )
 )   &    |-  ( ( ph  /\  x  e.  ( K ... N ) )  ->  ( F `
  x )  e.  S )   =>    |-  ( ph  ->  (  seq K (  .+  ,  F ) `  N )  =  ( (  seq K (  .+  ,  F ) `  M )  .+  (  seq ( M  +  1 )
 (  .+  ,  F ) `  N ) ) )
 
Theoremseq3-1p 10633* Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x  .+  y )  .+  z )  =  ( x  .+  ( y  .+  z ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  ( ( F `  M )  .+  (  seq ( M  +  1 ) (  .+  ,  F ) `  N ) ) )
 
Theoremseq3caopr3 10634* Lemma for seq3caopr2 10636. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   &    |-  ( ( ph  /\  n  e.  ( M..^ N ) )  ->  ( ( (  seq M (  .+  ,  F ) `  n ) Q (  seq M ( 
 .+  ,  G ) `  n ) )  .+  ( ( F `  ( n  +  1
 ) ) Q ( G `  ( n  +  1 ) ) ) )  =  ( ( (  seq M (  .+  ,  F ) `
  n )  .+  ( F `  ( n  +  1 ) ) ) Q ( ( 
 seq M (  .+  ,  G ) `  n )  .+  ( G `  ( n  +  1
 ) ) ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseqcaopr3g 10635* Lemma for seqcaopr2g 10637. (Contributed by Mario Carneiro, 25-Apr-2016.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( H `  k
 )  =  ( ( F `  k ) Q ( G `  k ) ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  H  e.  Y )   &    |-  ( ( ph  /\  n  e.  ( M..^ N ) )  ->  ( (
 (  seq M (  .+  ,  F ) `  n ) Q (  seq M (  .+  ,  G ) `
  n ) ) 
 .+  ( ( F `
  ( n  +  1 ) ) Q ( G `  ( n  +  1 )
 ) ) )  =  ( ( (  seq M (  .+  ,  F ) `  n )  .+  ( F `  ( n  +  1 ) ) ) Q ( ( 
 seq M (  .+  ,  G ) `  n )  .+  ( G `  ( n  +  1
 ) ) ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr2 10636* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ( ph  /\  ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 ) )  ->  (
 ( x Q z )  .+  ( y Q w ) )  =  ( ( x 
 .+  y ) Q ( z  .+  w ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 ) Q ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseqcaopr2g 10637* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   &    |-  ( ( ph  /\  ( ( x  e.  S  /\  y  e.  S )  /\  (
 z  e.  S  /\  w  e.  S )
 ) )  ->  (
 ( x Q z )  .+  ( y Q w ) )  =  ( ( x 
 .+  y ) Q ( z  .+  w ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( ( F `  k ) Q ( G `  k ) ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  H  e.  Y )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N ) Q (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremseq3caopr 10638* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  e.  S )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  .+  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `
  N )  .+  (  seq M (  .+  ,  G ) `  N ) ) )
 
Theoremseqcaoprg 10639* The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( F `  k
 )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( G `
  k )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( H `  k
 )  =  ( ( F `  k ) 
 .+  ( G `  k ) ) )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  ( ph  ->  H  e.  Y )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  ( (  seq M (  .+  ,  F ) `  N )  .+  (  seq M (  .+  ,  G ) `
  N ) ) )
 
Theoremiseqf1olemkle 10640* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  K  <_  ( `' J `  K ) )
 
Theoremiseqf1olemklt 10641* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   =>    |-  ( ph  ->  K  <  ( `' J `  K ) )
 
Theoremiseqf1olemqcl 10642 Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   =>    |-  ( ph  ->  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1 ) ) ) ,  ( J `
  A ) )  e.  ( M ... N ) )
 
Theoremiseqf1olemqval 10643* Lemma for seq3f1o 10660. Value of the function  Q. (Contributed by Jim Kingdon, 28-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  ( Q `  A )  =  if ( A  e.  ( K ... ( `' J `  K ) ) ,  if ( A  =  K ,  K ,  ( J `  ( A  -  1
 ) ) ) ,  ( J `  A ) ) )
 
Theoremiseqf1olemnab 10644* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  -.  ( A  e.  ( K ... ( `' J `  K ) )  /\  -.  B  e.  ( K
 ... ( `' J `  K ) ) ) )
 
Theoremiseqf1olemab 10645* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( K ... ( `' J `  K ) ) )   &    |-  ( ph  ->  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemnanb 10646* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  -.  A  e.  ( K
 ... ( `' J `  K ) ) )   &    |-  ( ph  ->  -.  B  e.  ( K ... ( `' J `  K ) ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf 10647* Lemma for seq3f1o 10660. Domain and codomain of  Q. (Contributed by Jim Kingdon, 26-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
 
Theoremiseqf1olemmo 10648* Lemma for seq3f1o 10660. Showing that  Q is one-to-one. (Contributed by Jim Kingdon, 27-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ph  ->  B  e.  ( M ... N ) )   &    |-  ( ph  ->  ( Q `  A )  =  ( Q `  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremiseqf1olemqf1o 10649* Lemma for seq3f1o 10660. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   =>    |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
 
Theoremiseqf1olemqk 10650* Lemma for seq3f1o 10660. 
Q is constant for one more position than  J is. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   =>    |-  ( ph  ->  A. x  e.  ( M ... K ) ( Q `  x )  =  x )
 
Theoremiseqf1olemjpcl 10651* Lemma for seq3f1o 10660. A closure lemma involving  J and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ J  /  f ]_ P `  x )  e.  S )
 
Theoremiseqf1olemqpcl 10652* Lemma for seq3f1o 10660. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  Q  =  ( u  e.  ( M
 ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( [_ Q  /  f ]_ P `  x )  e.  S )
 
Theoremiseqf1olemfvp 10653* Lemma for seq3f1o 10660. (Contributed by Jim Kingdon, 30-Aug-2022.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A  e.  ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  P  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  (
 f `  x )
 ) ,  ( G `
  M ) ) )   =>    |-  ( ph  ->  ( [_ T  /  f ]_ P `  A )  =  ( G `  ( T `  A ) ) )
 
Theoremseq3f1olemqsumkj 10654* Lemma for seq3f1o 10660. 
Q gives the same sum as 
J in the range  ( K ... ( `' J `  K ) ). (Contributed by Jim Kingdon, 29-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  ( `' J `  K ) )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  ( `' J `  K ) ) )
 
Theoremseq3f1olemqsumk 10655* Lemma for seq3f1o 10660. 
Q gives the same sum as 
J in the range  ( K ... N ). (Contributed by Jim Kingdon, 22-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq K (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq K (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemqsum 10656* Lemma for seq3f1o 10660. 
Q gives the same sum as 
J. (Contributed by Jim Kingdon, 21-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  K  =/=  ( `' J `  K ) )   &    |-  Q  =  ( u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `
  u ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  [_ Q  /  f ]_ P ) `  N ) )
 
Theoremseq3f1olemstep 10657* Lemma for seq3f1o 10660. Given a permutation which is constant up to a point, supply a new one which is constant for one more position. (Contributed by Jim Kingdon, 19-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )   &    |-  ( ph  ->  A. x  e.  ( M..^ K ) ( J `
  x )  =  x )   &    |-  ( ph  ->  ( 
 seq M (  .+  , 
 [_ J  /  f ]_ P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... K ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1olemp 10658* Lemma for seq3f1o 10660. Existence of a constant permutation of  ( M ... N ) which leads to the same sum as the permutation  F itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   &    |-  P  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  E. f
 ( f : ( M ... N ) -1-1-onto-> ( M ... N ) 
 /\  A. x  e.  ( M ... N ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N )  =  (  seq M (  .+  ,  L ) `  N ) ) )
 
Theoremseq3f1oleml 10659* Lemma for seq3f1o 10660. This is more or less the result, but stated in terms of  F and  G without  H.  L and  H may differ in terms of what happens to terms after  N. The terms after  N don't matter for the value at  N but we need some definition given the way our theorems concerning  seq work. (Contributed by Jim Kingdon, 17-Aug-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  L  =  ( x  e.  ( ZZ>=
 `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `  M ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  L ) `  N )  =  (  seq M ( 
 .+  ,  G ) `  N ) )
 
Theoremseq3f1o 10660* Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 3-Nov-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  x )  e.  S )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremseqf1oglem2a 10661* Lemma for seqf1og 10664. (Contributed by Mario Carneiro, 24-Apr-2016.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  G : A --> C )   &    |-  ( ph  ->  K  e.  A )   &    |-  ( ph  ->  ( M ... N )  C_  A )   &    |-  ( ph  ->  A  e.  W )   =>    |-  ( ph  ->  ( ( G `  K )  .+  (  seq M (  .+  ,  G ) `
  N ) )  =  ( (  seq M (  .+  ,  G ) `  N )  .+  ( G `  K ) ) )
 
Theoremseqf1oglem1 10662* Lemma for seqf1og 10664. (Contributed by Mario Carneiro, 26-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) -1-1-onto-> ( M ... ( N  +  1 )
 ) )   &    |-  ( ph  ->  G : ( M ... ( N  +  1
 ) ) --> C )   &    |-  J  =  ( k  e.  ( M ... N )  |->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )   &    |-  K  =  ( `' F `  ( N  +  1 ) )   =>    |-  ( ph  ->  J :
 ( M ... N )
 -1-1-onto-> ( M ... N ) )
 
Theoremseqf1oglem2 10663* Lemma for seqf1og 10664. (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Mario Carneiro, 24-Apr-2016.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) -1-1-onto-> ( M ... ( N  +  1 )
 ) )   &    |-  ( ph  ->  G : ( M ... ( N  +  1
 ) ) --> C )   &    |-  J  =  ( k  e.  ( M ... N )  |->  ( F `  if ( k  <  K ,  k ,  ( k  +  1 ) ) ) )   &    |-  K  =  ( `' F `  ( N  +  1 ) )   &    |-  ( ph  ->  A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  g : ( M ... N ) --> C )  ->  (  seq M (  .+  ,  ( g  o.  f
 ) ) `  N )  =  (  seq M (  .+  ,  g
 ) `  N )
 ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  ( G  o.  F ) ) `  ( N  +  1 )
 )  =  (  seq M (  .+  ,  G ) `  ( N  +  1 ) ) )
 
Theoremseqf1og 10664* Rearrange a sum via an arbitrary bijection on  ( M ... N ). (Contributed by Mario Carneiro, 27-Feb-2014.) (Revised by Jim Kingdon, 29-Aug-2025.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x  .+  y )  =  ( y  .+  x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  C 
 C_  S )   &    |-  ( ph  ->  .+  e.  V )   &    |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( G `  x )  e.  C )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  ( H `
  k )  =  ( G `  ( F `  k ) ) )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   =>    |-  ( ph  ->  (  seq M (  .+  ,  H ) `  N )  =  (  seq M (  .+  ,  G ) `  N ) )
 
Theoremser3add 10665* The sum of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 4-Oct-2022.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  +  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremser3sub 10666* The difference of two infinite series. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 22-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  -  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  H ) `  N )  =  ( (  seq M (  +  ,  F ) `  N )  -  (  seq M (  +  ,  G ) `  N ) ) )
 
Theoremseq3id3 10667* A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a  .+ -idempotent sums (or " .+'s") to that element. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ph  ->  ( Z  .+  Z )  =  Z )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( F `  x )  =  Z )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseq3id 10668* Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )   &    |-  ( ph  ->  Z  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  ( F `  N )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  |`  ( ZZ>= `  N ) )  = 
 seq N (  .+  ,  F ) )
 
Theoremseq3id2 10669* The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for  .+) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ( ph  /\  x  e.  S )  ->  ( x  .+  Z )  =  x )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  K ) )   &    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ( K  +  1 ) ... N ) )  ->  ( F `
  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  K )  =  (  seq M (  .+  ,  F ) `  N ) )
 
Theoremseq3homo 10670* Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( H `  ( x  .+  y
 ) )  =  ( ( H `  x ) Q ( H `  y ) ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( H `  ( F `  x ) )  =  ( G `  x ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( G `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x Q y )  e.  S )   =>    |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `
  N ) )  =  (  seq M ( Q ,  G ) `
  N ) )
 
Theoremseq3z 10671* If the operation  .+ has an absorbing element  Z (a.k.a. zero element), then any sequence containing a  Z evaluates to  Z. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  Z )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( x  .+  Z )  =  Z )   &    |-  ( ph  ->  K  e.  ( M ... N ) )   &    |-  ( ph  ->  ( F `  K )  =  Z )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  Z )
 
Theoremseqfeq3 10672* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  =  ( x Q y ) )   =>    |-  ( ph  ->  seq
 M (  .+  ,  F )  =  seq M ( Q ,  F ) )
 
Theoremseqhomog 10673* Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( H `
  ( x  .+  y ) )  =  ( ( H `  x ) Q ( H `  y ) ) )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  ( H `  ( F `  x ) )  =  ( G `  x ) )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  .+  e.  X )   &    |-  ( ph  ->  Q  e.  Y )   =>    |-  ( ph  ->  ( H `  (  seq M (  .+  ,  F ) `
  N ) )  =  (  seq M ( Q ,  G ) `
  N ) )
 
Theoremseqfeq4g 10674* Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  ( F `
  x )  e.  S )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  .+  e.  W )   &    |-  ( ph  ->  Q  e.  X )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x 
 .+  y )  =  ( x Q y ) )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F ) `  N )  =  (  seq M ( Q ,  F ) `  N ) )
 
Theoremseq3distr 10675* The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( C T ( x  .+  y ) )  =  ( ( C T x )  .+  ( C T y ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M ) )  ->  ( G `  x )  e.  S )   &    |-  (
 ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  =  ( C T ( G `
  x ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x T y )  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( 
 seq M (  .+  ,  F ) `  N )  =  ( C T (  seq M ( 
 .+  ,  G ) `  N ) ) )
 
Theoremser0 10676 The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  +  ,  ( Z  X.  { 0 } ) ) `  N )  =  0 )
 
Theoremser0f 10677 A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( Z  X.  {
 0 } ) )  =  ( Z  X.  { 0 } ) )
 
Theoremfser0const 10678* Simplifying an expression which turns out just to be a constant zero sequence. (Contributed by Jim Kingdon, 16-Sep-2022.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  ( n  e.  Z  |->  if ( n  <_  N ,  ( ( Z  X.  { 0 } ) `  n ) ,  0 ) )  =  ( Z  X.  { 0 } ) )
 
Theoremser3ge0 10679* A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )   =>    |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremser3le 10680* Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  RR )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  (  seq M (  +  ,  G ) `  N ) )
 
4.6.6  Integer powers
 
Syntaxcexp 10681 Extend class notation to include exponentiation of a complex number to an integer power.
 class  ^
 
Definitiondf-exp 10682* Define exponentiation to nonnegative integer powers. For example,  ( 5 ^ 2 )  =  2 5 (see ex-exp 15596).

This definition is not meant to be used directly; instead, exp0 10686 and expp1 10689 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that  0 ^ 0  =  1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (see 0exp0e1 10687).

4-Jun-2014: The definition was extended to include negative integer exponents. For example,  ( -u 3 ^
-u 2 )  =  ( 1  /  9
) (ex-exp 15596). The case  x  =  0 ,  y  <  0 gives the value  ( 1  /  0 ), so we will avoid this case in our theorems. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.)

 |- 
 ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  < 
 y ,  (  seq 1 (  x.  ,  ( NN  X.  { x }
 ) ) `  y
 ) ,  ( 1 
 /  (  seq 1
 (  x.  ,  ( NN  X.  { x }
 ) ) `  -u y
 ) ) ) ) )
 
Theoremexp3vallem 10683 Lemma for exp3val 10684. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( 
 seq 1 (  x. 
 ,  ( NN  X.  { A } ) ) `
  N ) #  0 )
 
Theoremexp3val 10684 Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N )
 )  ->  ( A ^ N )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  N ) ,  ( 1  /  (  seq 1
 (  x.  ,  ( NN  X.  { A }
 ) ) `  -u N ) ) ) ) )
 
Theoremexpnnval 10685 Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N )  =  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `  N ) )
 
Theoremexp0 10686 Value of a complex number raised to the 0th power. Note that under our definition,  0 ^ 0  =  1 (0exp0e1 10687) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.)
 |-  ( A  e.  CC  ->  ( A ^ 0
 )  =  1 )
 
Theorem0exp0e1 10687 The zeroth power of zero equals one. See comment of exp0 10686. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( 0 ^ 0
 )  =  1
 
Theoremexp1 10688 Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( A  e.  CC  ->  ( A ^ 1
 )  =  A )
 
Theoremexpp1 10689 Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^
 ( N  +  1 ) )  =  ( ( A ^ N )  x.  A ) )
 
Theoremexpnegap0 10690 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
 
Theoremexpineg2 10691 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
 
Theoremexpn1ap0 10692 A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A ^ -u 1
 )  =  ( 1 
 /  A ) )
 
Theoremexpcllem 10693* Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   =>    |-  (
 ( A  e.  F  /\  B  e.  NN0 )  ->  ( A ^ B )  e.  F )
 
Theoremexpcl2lemap 10694* Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
 |-  F  C_  CC   &    |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y )  e.  F )   &    |-  1  e.  F   &    |-  (
 ( x  e.  F  /\  x #  0 )  ->  ( 1  /  x )  e.  F )   =>    |-  (
 ( A  e.  F  /\  A #  0  /\  B  e.  ZZ )  ->  ( A ^ B )  e.  F )
 
Theoremnnexpcl 10695 Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  NN  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN )
 
Theoremnn0expcl 10696 Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  NN0 )
 
Theoremzexpcl 10697 Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  ZZ )
 
Theoremqexpcl 10698 Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  QQ )
 
Theoremreexpcl 10699 Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  RR )
 
Theoremexpcl 10700 Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  CC )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >