ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgrupgrushgr Unicode version

Theorem uspgrupgrushgr 15980
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
uspgrupgrushgr  |-  ( G  e. USPGraph 
<->  ( G  e. UPGraph  /\  G  e. USHGraph ) )

Proof of Theorem uspgrupgrushgr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrupgr 15979 . . 3  |-  ( G  e. USPGraph  ->  G  e. UPGraph )
2 uspgrushgr 15978 . . 3  |-  ( G  e. USPGraph  ->  G  e. USHGraph )
31, 2jca 306 . 2  |-  ( G  e. USPGraph  ->  ( G  e. UPGraph  /\  G  e. USHGraph ) )
4 eqid 2229 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
5 eqid 2229 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
64, 5ushgrfm 15874 . . . 4  |-  ( G  e. USHGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  E. y 
y  e.  x }
)
7 edgvalg 15860 . . . . 5  |-  ( G  e. UPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
8 upgredgssen 15937 . . . . 5  |-  ( G  e. UPGraph  ->  (Edg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
97, 8eqsstrrd 3261 . . . 4  |-  ( G  e. UPGraph  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
10 f1ssr 5538 . . . 4  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  E. y  y  e.  x }  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
116, 9, 10syl2anr 290 . . 3  |-  ( ( G  e. UPGraph  /\  G  e. USHGraph )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
124, 5isuspgren 15955 . . . 4  |-  ( G  e. UPGraph  ->  ( G  e. USPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
1312adantr 276 . . 3  |-  ( ( G  e. UPGraph  /\  G  e. USHGraph )  ->  ( G  e. USPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
1411, 13mpbird 167 . 2  |-  ( ( G  e. UPGraph  /\  G  e. USHGraph )  ->  G  e. USPGraph )
153, 14impbii 126 1  |-  ( G  e. USPGraph 
<->  ( G  e. UPGraph  /\  G  e. USHGraph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 713   E.wex 1538    e. wcel 2200   {crab 2512    C_ wss 3197   ~Pcpw 3649   class class class wbr 4083   dom cdm 4719   ran crn 4720   -1-1->wf1 5315   ` cfv 5318   1oc1o 6555   2oc2o 6556    ~~ cen 6885  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  USHGraphcushgr 15868  UPGraphcupgr 15891  USPGraphcuspgr 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-1o 6562  df-2o 6563  df-en 6888  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-ushgrm 15870  df-upgren 15893  df-uspgren 15953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator